Publications by authors named "Gladys Morrison"

10 Publications

  • Page 1 of 1

Facilitating Drug Discovery in Breast Cancer by Virtually Screening Patients Using In Vitro Drug Response Modeling.

Cancers (Basel) 2021 Feb 20;13(4). Epub 2021 Feb 20.

Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA.

(1) Background: Drug imputation methods often aim to translate in vitro drug response to in vivo drug efficacy predictions. While commonly used in retrospective analyses, our aim is to investigate the use of drug prediction methods for the generation of novel drug discovery hypotheses. Triple-negative breast cancer (TNBC) is a severe clinical challenge in need of new therapies. (2) Methods: We used an established machine learning approach to build models of drug response based on cell line transcriptome data, which we then applied to patient tumor data to obtain predicted sensitivity scores for hundreds of drugs in over 1000 breast cancer patients. We then examined the relationships between predicted drug response and patient clinical features. (3) Results: Our analysis recapitulated several suspected vulnerabilities in TNBC and identified a number of compounds-of-interest. AZD-1775, a Wee1 inhibitor, was predicted to have preferential activity in TNBC ( < 2.2 × 10) and its efficacy was highly associated with mutations ( = 1.2 × 10). We validated these findings using independent cell line screening data and pathway analysis. Additionally, co-administration of AZD-1775 with standard-of-care paclitaxel was able to inhibit tumor growth ( < 0.05) and increase survival ( < 0.01) in a xenograft mouse model of TNBC. (4) Conclusions: Overall, this study provides a framework to turn any cancer transcriptomic dataset into a dataset for drug discovery. Using this framework, one can quickly generate meaningful drug discovery hypotheses for a cancer population of interest.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers13040885DOI Listing
February 2021

The NMDAR modulator NYX-2925 alleviates neuropathic pain via a Src-dependent mechanism in the mPFC.

Neurobiol Pain 2020 Jan-Jul;7:100039. Epub 2019 Dec 4.

Aptinyx Inc., Evanston, IL, United States.

Previous studies have shown that oral administration of the NMDAR modulator NYX-2925 alleviates pain in several animal models of neuropathic pain and this appears to be through mPFC, but not spinal, mediated mechanisms. While much is known about the impact of neuropathic pain on NMDAR-mediated signaling in the spinal cord, limited studies have focused on the brain. In the current study, we assess signaling changes associated with NMDAR-mediated plasticity in the mPFC and the impact of NYX-2925 administration on the normalization of these signaling changes. We found a decrease in activated Src levels in the mPFC of animals with chronic constriction injury (CCI) of the sciatic nerve. While Src mediated activation of NMDARs was also decreased in CCI animals, the main NMDAR phosphorylation site of CAMKII was not affected. This is in opposition to what has been found in the spinal cord, where both Src and CAMKII activation are increased. Oral administration of NYX-2925 restored levels of activated Src and Src phosphorylation sites on GluN2A and GluN2B in the mPFC, with no effect on activated CAMKII levels. The analgesic effect of NYX-2925 appears dependent on this restoration of Src activation in the mPFC, as co-administering Src activation inhibitors prevented the NYX-2925 analgesic effect. Overall, these data suggest that NMDAR-mediated signaling plays a key role in neuropathic pain, albeit in different directions in the spinal cord vs. the mPFC. Furthermore, the analgesic effect of NYX-2925 appears to involve a restoration of NMDAR-mediated signaling in the mPFC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ynpai.2019.100039DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938954PMC
December 2019

Discovering drugs to overcome chemoresistance in ovarian cancers based on the cancer genome atlas tumor transcriptome profile.

Oncotarget 2017 Dec 4;8(70):115102-115113. Epub 2017 Dec 4.

Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA.

Ovarian cancer accounts for the highest mortality among gynecologic cancers, mainly due to intrinsic or acquired chemoresistance. While mechanistic-based methods have been used to identify compounds that can overcome chemoresistance, an effective comprehensive drug screening has yet to be developed. We applied a transcriptome based drug sensitivity prediction method, to the Cancer Genome Atlas (TCGA) ovarian cancer dataset to impute patient tumor response to over 100 different drugs. By stratifying patients based on their predicted response to standard of care (SOC) chemotherapy, we identified drugs that are likely more sensitive in SOC resistant ovarian tumors. Five drugs (ABT-888, BIBW2992, gefitinib, AZD6244 and lenalidomide) exhibit higher efficacy in SOC resistant ovarian tumors when multi-platform of transcriptome profiling methods were employed. Additional and clinical sample validations were carried out and verified the effectiveness of these agents. Our candidate drugs hold great potential to improve clinical outcome of chemoresistant ovarian cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.22870DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5777757PMC
December 2017

Discovering novel pharmacogenomic biomarkers by imputing drug response in cancer patients from large genomics studies.

Genome Res 2017 10 28;27(10):1743-1751. Epub 2017 Aug 28.

Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois 60637, USA.

Obtaining accurate drug response data in large cohorts of cancer patients is very challenging; thus, most cancer pharmacogenomics discovery is conducted in preclinical studies, typically using cell lines and mouse models. However, these platforms suffer from serious limitations, including small sample sizes. Here, we have developed a novel computational method that allows us to impute drug response in very large clinical cancer genomics data sets, such as The Cancer Genome Atlas (TCGA). The approach works by creating statistical models relating gene expression to drug response in large panels of cancer cell lines and applying these models to tumor gene expression data in the clinical data sets (e.g., TCGA). This yields an imputed drug response for every drug in each patient. These imputed drug response data are then associated with somatic genetic variants measured in the clinical cohort, such as copy number changes or mutations in protein coding genes. These analyses recapitulated drug associations for known clinically actionable somatic genetic alterations and identified new predictive biomarkers for existing drugs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/gr.221077.117DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5630037PMC
October 2017

Utility of patient-derived lymphoblastoid cell lines as an ex vivo capecitabine sensitivity prediction model for breast cancer patients.

Oncotarget 2016 Jun;7(25):38359-38366

Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA.

Capecitabine is commonly used in treating breast cancer; however, therapeutic response varies among patients and there is no clinically validated model to predict individual outcomes. Here, we investigated whether drug sensitivity quantified in ex vivo patients' blood-derived cell lines can predict response to capecitabine in vivo. Lymphoblastoid cell lines (LCLs) were established from a cohort of metastatic breast cancer patients (n = 53) who were prospectively monitored during treatment with single agent capecitabine at 2000 mg/m2/day. LCLs were treated with increasing concentrations of 5'-DFUR, a major capecitabine metabolite, to assess patients' ex vivo sensitivity to this drug. Subsequently, ex vivo phenotype was compared to observed patient disease response and drug induced-toxicities. We acquired an independent cohort of breast cancer cell lines and LCLs derived from the same donors from ATCC, compared their sensitivity to 5'-DFUR. As seen in the patient population, we observed large inter-individual variability in response to 5'-DFUR treatment in patient-derived LCLs. Patients whose LCLs were more sensitive to 5'-DFUR had a significantly longer median progression free survival (9-month vs 6-month, log rank p-value = 0.017). In addition, this significant positive correlation for 5'-DFUR sensitivity was replicated in an independent cohort of 8 breast cancer cell lines and LCLs derived from the same donor. Our data suggests that at least a portion of the individual sensitivity to capecitabine is shared between germline tissue and tumor tissue. It also supports the utility of patient-derived LCLs as a predictive model for capecitabine treatment efficacy in breast cancer patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.9521DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5122395PMC
June 2016

Evaluation of inter-batch differences in stem-cell derived neurons.

Stem Cell Res 2016 Jan 31;16(1):140-8. Epub 2015 Dec 31.

Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, IL 60637, USA; Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA. Electronic address:

Differentiated cells retain the genetic information of the donor but the extent to which phenotypic differences between donors or batches of differentiated cells are explained by variation introduced during the differentiation process is not fully understood. In this study, we evaluated four separate batches of commercially available neurons originating from the same iPSCs to investigate whether the differentiation process used in manufacturing iPSCs to neurons affected genome-wide gene expression and modified cytosines, or neuronal sensitivity to drugs. No significant changes in gene expression, as measured by RNA-Seq, or cytosine modification levels, as measured by the Illumina 450K arrays, were observed between batches relative to changes over time. As expected, neurotoxic chemotherapeutics affected neuronal outgrowth, but no inter-batch differences were observed in sensitivity to paclitaxel, vincristine and cisplatin. As a testament to the utility of the model for studies of neuropathy, we observed that genes involved in neuropathy had relatively higher expression levels in these samples across different time points. Our results suggest that the process used to differentiate iPSCs into neurons is consistent, resulting in minimal intra-individual variability across batches. Therefore, this model is reasonable for studies of human neuropathy, druggable targets to prevent neuropathy, and other neurological diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2015.12.025DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762730PMC
January 2016

Chemotherapy-induced peripheral neuropathy: Current status and progress.

Gynecol Oncol 2016 Jan 7;140(1):176-83. Epub 2015 Nov 7.

Section of Hematology-Oncology, Department of Medicine, The University of Chicago, Knapp Center for Biomedical Discovery, 900 East 57th Street, Chicago, IL 60637, United States. Electronic address:

As there are increasing numbers of cancer survivors, more attention is being paid to the long term unwanted effects patients may experience as a result of their treatment and the impact these side effects can have on their quality of life. Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common long-term toxicities from chemotherapy. In this review we will briefly review the clinical presentation, evaluation and management of chemotherapy-induced peripheral neuropathy, with a focus on CIPN related to platinum and taxane agents. We will then discuss current clinical models of peripheral neuropathy and ongoing research to better understand CIPN and develop potential treatment options.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygyno.2015.11.011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698212PMC
January 2016

Overcoming endocrine resistance due to reduced PTEN levels in estrogen receptor-positive breast cancer by co-targeting mammalian target of rapamycin, protein kinase B, or mitogen-activated protein kinase kinase.

Breast Cancer Res 2014 Sep 11;16(5):430. Epub 2014 Sep 11.

Introduction: Activation of the phosphatidylinositol 3-kinase (PI3K) pathway in estrogen receptor α (ER)-positive breast cancer is associated with reduced ER expression and activity, luminal B subtype, and poor outcome. Phosphatase and tensin homolog (PTEN), a negative regulator of this pathway, is typically lost in ER-negative breast cancer. We set out to clarify the role of reduced PTEN levels in endocrine resistance, and to explore the combination of newly developed PI3K downstream kinase inhibitors to overcome this resistance.

Methods: Altered cellular signaling, gene expression, and endocrine sensitivity were determined in inducible PTEN-knockdown ER-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer cell and/or xenograft models. Single or two-agent combinations of kinase inhibitors were examined to improve endocrine therapy.

Results: Moderate PTEN reduction was sufficient to enhance PI3K signaling, generate a gene signature associated with the luminal B subtype of breast cancer, and cause endocrine resistance in vitro and in vivo. The mammalian target of rapamycin (mTOR), protein kinase B (AKT), or mitogen-activated protein kinase kinase (MEK) inhibitors, alone or in combination, improved endocrine therapy, but the efficacy varied by PTEN levels, type of endocrine therapy, and the specific inhibitor(s). A single-agent AKT inhibitor combined with fulvestrant conferred superior efficacy in overcoming resistance, inducing apoptosis and tumor regression.

Conclusions: Moderate reduction in PTEN, without complete loss, can activate the PI3K pathway to cause endocrine resistance in ER-positive breast cancer, which can be overcome by combining endocrine therapy with inhibitors of the PI3K pathway. Our data suggests that the ER degrader fulvestrant, to block both ligand-dependent and -independent ER signaling, combined with an AKT inhibitor is an effective strategy to test in patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13058-014-0430-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303114PMC
September 2014

Therapeutic potential of the dual EGFR/HER2 inhibitor AZD8931 in circumventing endocrine resistance.

Breast Cancer Res Treat 2014 Apr 20;144(2):263-72. Epub 2014 Feb 20.

Lester and Sue Smith Breast Center and Dan L Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, BCM:600, Houston, TX, 77030, USA.

Modest up-regulation of either HER-ligands or receptors has been implicated in acquired endocrine resistance. AZD8931, a dual tyrosine kinase inhibitor (TKI) of epithelial growth factor receptor (EGFR)/HER2, has been shown to more effectively block ligand-dependent HER signaling than the HER TKIs lapatinib or gefitinib. We therefore examined the effect of AZD8931 in ER-positive/HER2-negative breast cancer cells with acquired resistance to tamoxifen, where there is ligand up-regulation associated with HER pathway activation. RNA-seq ligand profiling and levels of HER receptors and signaling by western blotting were conducted in ER+ MCF7 and T47D parental cells and their Tam-resistant derivatives (TamRes). In vitro cell growth and apoptosis and HER ligand-stimulated signaling were measured in response to endocrine and HER TKIs. For studies in vivo, transplantable MCF7/TamRes xenografts were treated with tamoxifen or fulvestrant, either alone or in combination with AZD8931. AZD8931 only minimally enhanced endocrine sensitivity in MCF7 parental cells, but showed a greater effect in the T47D parental model. AZD8931 combined with either tamoxifen or fulvestrant inhibited cell growth more than lapatinib in T47D TamRes cells, and was also significantly, though modestly, more potent in MCF7 TamRes cells. In both TamRes models, AZD8931 significantly inhibited cell proliferation and induced apoptosis. Under ligand-stimulated conditions, AZD8931 more potently inhibited HER signaling than lapatinib or gefitinib. AZD8931 also significantly delayed the growth of MCF7 TamRes xenografts in the presence of tamoxifen or fulvestrant. The strongest inhibition was achieved with a fulvestrant and AZD8931 combination, though no tumor regression was observed. This study provides evidence that AZD8931 has greater inhibitory efficacy in tamoxifen-resistant settings than in an endocrine therapy naïve setting. The absence of tumor regression, however, suggests that additional escape pathways contribute to resistant growth and will need to be targeted to fully circumvent tamoxifen resistance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10549-014-2878-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030601PMC
April 2014

Different mechanisms for resistance to trastuzumab versus lapatinib in HER2-positive breast cancers--role of estrogen receptor and HER2 reactivation.

Breast Cancer Res 2011 28;13(6):R121. Epub 2011 Nov 28.

Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.

Introduction: The human epidermal growth factor receptor 2 (HER2)-targeted therapies trastuzumab (T) and lapatinib (L) show high efficacy in patients with HER2-positive breast cancer, but resistance is prevalent. Here we investigate resistance mechanisms to each drug alone, or to their combination using a large panel of HER2-positive cell lines made resistant to these drugs.

Methods: Response to L + T treatment was characterized in a panel of 13 HER2-positive cell lines to identify lines that were de novo resistant. Acquired resistant lines were then established by long-term exposure to increasing drug concentrations. Levels and activity of HER2 and estrogen receptor (ER) pathways were determined by qRT-PCR, immunohistochemistry, and immunoblotting assays. Cell growth, proliferation, and apoptosis in parental cells and resistant derivatives were assessed in response to inhibition of HER or ER pathways, either pharmacologically (L, T, L + T, or fulvestrant) or by using siRNAs. Efficacy of combined endocrine and anti-HER2 therapies was studied in vivo using UACC-812 xenografts.

Results: ER or its downstream products increased in four out of the five ER+/HER2+ lines, and was evident in one of the two intrinsically resistant lines. In UACC-812 and BT474 parental and resistant derivatives, HER2 inhibition by T reactivated HER network activity to promote resistance. T-resistant lines remained sensitive to HER2 inhibition by either L or HER2 siRNA. With more complete HER2 blockade, resistance to L-containing regimens required the activation of a redundant survival pathway, ER, which was up-regulated and promoted survival via various Bcl2 family members. These L- and L + T-resistant lines were responsive to fulvestrant and to ER siRNA. However, after prolonged treatment with L, but not L + T, BT474 cells switched from depending on ER as a survival pathway, to relying again on the HER network (increased HER2, HER3, and receptor ligands) to overcome L's effects. The combination of endocrine and L + T HER2-targeted therapies achieved complete tumor regression and prevented development of resistance in UACC-812 xenografts.

Conclusions: Combined L + T treatment provides a more complete and stable inhibition of the HER network. With sustained HER2 inhibition, ER functions as a key escape/survival pathway in ER-positive/HER2-positive cells. Complete blockade of the HER network, together with ER inhibition, may provide optimal therapy in selected patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/bcr3067DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3326563PMC
June 2012