Publications by authors named "Giulia M Camerino"

13 Publications

  • Page 1 of 1

Ergogenic Effect of BCAAs and L-Alanine Supplementation: Proof-of-Concept Study in a Murine Model of Physiological Exercise.

Nutrients 2020 Jul 30;12(8). Epub 2020 Jul 30.

Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4-Campus, 70125 Bari, Italy.

Background: Branched-chain amino acids (BCAAs: leucine, isoleucine, valine) account for 35% of skeletal muscle essential amino acids (AAs). As such, they must be provided in the diet to support peptide synthesis and inhibit protein breakdown. Although substantial evidence has been collected about the potential usefulness of BCAAs in supporting muscle function and structure, dietary supplements containing BCAAs alone may not be effective in controlling muscle protein turnover, due to the rate-limiting bioavailability of other AAs involved in BCAAs metabolism.

Methods: We aimed to evaluate the in vivo/ex vivo effects of a 4-week treatment with an oral formulation containing BCAAs alone (2:1:1) on muscle function, structure, and metabolism in a murine model of physiological exercise, which was compared to three modified formulations combining BCAAs with increasing concentrations of L-Alanine (ALA), an AA controlling BCAAs catabolism.

Results: A preliminary pharmacokinetic study confirmed the ability of ALA to boost up BCAAs bioavailability. After 4 weeks, (BCAAs + 2ALA) had the best protective effect on mice force and fatigability, as well as on muscle morphology and metabolic indices.

Conclusion: Our study corroborates the use of BCAAs + ALA to support muscle health during physiological exercise, underlining how the relative BCAAs/ALA ratio is important to control BCAAs distribution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu12082295DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7468919PMC
July 2020

Visceral Fat Dysfunctions in the Rat Social Isolation Model of Psychosis.

Front Pharmacol 2017 8;8:787. Epub 2017 Nov 8.

Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.

Medication with neuroleptics has been associated with adipose tissue dysfunctions and, in particular, with increased visceral fat amount. However, several studies suggested that antipsychotic treatment might not be the main responsible of fat mass accumulation, as this has been also described in not treated psychotic patients. One of the most used "drug-free" rodent models of psychosis is the social isolation rearing of young adult rats, which provides a non-pharmacologic method of inducing long-term alterations reminiscent of symptoms seen in psychotic patients. Recent data highlighted a crucial role of redox imbalance in adipose tissue dysfunctions, in terms of decreased antioxidant defense and increased reactive oxygen species (ROS). Here, we investigated possible oxidative stress-related biomolecular alterations associated with visceral fat increase in 7 week isolated rats. To this purpose, we quantified total and visceral fat amount by using dual-energy X-ray (DEXA) absorptiometry. On visceral fat, we analyzed the expression of specific ROS-producer genes (), antioxidant enzymes ( and ) and oxidative stress-induced damage markers (, and ). The impact of oxidative stress on beta3-adrenergic receptors (), at both mRNA and protein level, was also assessed. We found that 7 weeks of social isolation induced an increase in total and visceral fat, associated with a decrease in (mRNA and protein) as well as mRNA levels and an enhanced expression of (mRNA and protein) and mRNA. No differences were detected in mRNA levels between grouped and isolated animals. Elevations in , , and expression in visceral fat of isolated animals accounted for oxidative stress-related damage in this tissue, further associated with a significant increase in mRNA and protein. Our results provide a novel understanding of the pathological link existing among psychosocial stress-induced psychosis, adipose tissue dysfunctions and redox imbalance, opening new therapeutic perspectives for the treatment of alterations in peripheral tissues associated with this mental disorder.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphar.2017.00787DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5682313PMC
November 2017

Risk of Myopathy in Patients in Therapy with Statins: Identification of Biological Markers in a Pilot Study.

Front Pharmacol 2017 27;8:500. Epub 2017 Jul 27.

Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo MoroBari, Italy.

Statin therapy may induce skeletal muscle damage ranging from myalgia to severe rhabdomyolysis. Our previous preclinical studies showed that statin treatment in rats involves the reduction of skeletal muscle ClC-1 chloride channel expression and related chloride conductance (gCl). An increase of the activity of protein kinase C theta (PKC theta) isoform, able to inactivate ClC-1, may contribute to destabilize sarcolemma excitability. These effects can be detrimental for muscle function leading to drug-induced myopathy. Our goal is to study the causes of statin-induced muscle side effects in patients at the aim to identify biological markers useful to prevent and counteract statin-induced muscle damage. We examined 10 patients, who experienced myalgia and hyper-CK-emia after starting statin therapy compared to 9 non-myopathic subjects not using lipid-lowering drugs. Western Blot (WB) analysis showed a 40% reduction of ClC-1 protein and increased expression of phosphorylated PKC in muscle biopsies of statin-treated patients with respect to untreated subjects, independently from their age and statin type. Real-time PCR analysis showed that despite reduction of the protein, the ClC-1 mRNA was not significantly changed, suggesting post-transcriptional modification. The mRNA expression of a series of genes was also evaluated. MuRF-1 was increased in accord with muscle atrophy, MEF-2, calcineurin (CN) and GLUT-4 transporter were reduced, suggesting altered transcription, alteration of glucose homeostasis and energy deficit. Accordingly, the phosphorylated form of AMPK, measured by WB, was increased, suggesting cytoprotective process activation. In parallel, mRNA expression of Notch-1, involved in muscle cell proliferation, was highly expressed in statin-treated patients, indicating active regeneration. Also, PGC-1-alpha and isocitrate-dehydrogenase increased expression together with increased activity of mitochondrial citrate-synthase, measured by spectrophotometric assay, suggests mitochondrial biogenesis. Thus, the reduction of ClC-1 protein and consequent sarcolemma hyperexcitability together with energy deficiency appear to be among the most important alterations to be associated with statin-related risk of myopathy in humans. Thus, it may be important to avoid statin treatment in pathologies characterized by energy deficit and chloride channel malfunction. This study validates the measure of ClC-1 expression as a reliable clinical test for assessing statin-dependent risk of myopathy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphar.2017.00500DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5529355PMC
July 2017

ATP Sensitive Potassium Channels in the Skeletal Muscle Function: Involvement of the KCNJ11(Kir6.2) Gene in the Determination of Mechanical Warner Bratzer Shear Force.

Front Physiol 2016 10;7:167. Epub 2016 May 10.

Department of Veterinary Medicine, University of Bari Aldo Moro Bari, Italy.

The ATP-sensitive K(+)-channels (KATP) are distributed in the tissues coupling metabolism with K(+) ions efflux. KATP subunits are encoded by KCNJ8 (Kir6.1), KCNJ11 (Kir6.2), ABCC8 (SUR1), and ABCC9 (SUR2) genes, alternative RNA splicing give rise to SUR variants that confer distinct physiological properties on the channel. An high expression/activity of the sarco-KATP channel is observed in various rat fast-twitch muscles, characterized by elevated muscle strength, while a low expression/activity is observed in the slow-twitch muscles characterized by reduced strength and frailty. Down-regulation of the KATP subunits of fast-twitch fibers is found in conditions characterized by weakness and frailty. KCNJ11 gene knockout mice have reduced glycogen, lean phenotype, lower body fat, and weakness. KATP channel is also a sensor of muscle atrophy. The KCNJ11 gene is located on BTA15, close to a QTL for meat tenderness, it has also a role in glycogen storage, a key mechanism of the postmortem transformation of muscle into meat. The role of KCNJ11 gene in muscle function may underlie an effect of KCNJ11 genotypes on meat tenderness, as recently reported. The fiber phenotype and genotype are important in livestock production science. Quantitative traits including meat production and quality are influenced both by environment and genes. Molecular markers can play an important role in the genetic improvement of animals through breeding strategies. Many factors influence the muscle Warner-Bratzler shear force including breed, age, feeding, the biochemical, and functional parameters. The role of KCNJ11gene and related genes on muscle tenderness will be discussed in the present review.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphys.2016.00167DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4862255PMC
May 2016

Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery.

Front Pharmacol 2016 10;7:121. Epub 2016 May 10.

Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy.

In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, disabling, or life-threatening. In spite of this, ion channels are the primary target of only about 5% of the marketed drugs suggesting their potential in drug discovery. The current review summarizes the therapeutic management of the principal ion channelopathies of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion channels. For most channelopathies the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a significant number of patients. Other channelopathies can exploit ion channel targeted drugs, such as marketed sodium channel blockers. Developing new and more specific therapeutic approaches is therefore required. To this aim, a major advancement in the pharmacotherapy of channelopathies has been the discovery that ion channel mutations lead to change in biophysics that can in turn specifically modify the sensitivity to drugs: this opens the way to a pharmacogenetics strategy, allowing the development of a personalized therapy with increased efficacy and reduced side effects. In addition, the identification of disease modifiers in ion channelopathies appears an alternative strategy to discover novel druggable targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphar.2016.00121DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4861771PMC
May 2016

Clinical, Molecular, and Functional Characterization of CLCN1 Mutations in Three Families with Recessive Myotonia Congenita.

Neuromolecular Med 2015 Sep 26;17(3):285-96. Epub 2015 May 26.

Department of Neurosciences, University of Messina, Messina, Italy.

Myotonia congenita (MC) is an inherited muscle disease characterized by impaired muscle relaxation after contraction, resulting in muscle stiffness. Both recessive (Becker's disease) or dominant (Thomsen's disease) MC are caused by mutations in the CLCN1 gene encoding the voltage-dependent chloride ClC-1 channel, which is quite exclusively expressed in skeletal muscle. More than 200 CLCN1 mutations have been associated with MC. We provide herein a detailed clinical, molecular, and functional evaluation of four patients with recessive MC belonging to three different families. Four CLCN1 variants were identified, three of which have never been characterized. The c.244A>G (p.T82A) and c.1357C>T (p.R453W) variants were each associated in compound heterozygosity with c.568GG>TC (p.G190S), for which pathogenicity is already known. The new c.809G>T (p.G270V) variant was found in the homozygous state. Patch-clamp studies of ClC-1 mutants expressed in tsA201 cells confirmed the pathogenicity of p.G270V, which greatly shifts the voltage dependence of channel activation toward positive potentials. Conversely, the mechanisms by which p.T82A and p.R453W cause the disease remained elusive, as the mutated channels behave similarly to WT. The results also suggest that p.G190S does not exert dominant-negative effects on other mutated ClC-1 subunits. Moreover, we performed a RT-PCR quantification of selected ion channels transcripts in muscle biopsies of two patients. The results suggest gene expression alteration of sodium and potassium channel subunits in myotonic muscles; if confirmed, such analysis may pave the way toward a better understanding of disease phenotype and a possible identification of new therapeutic options.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12017-015-8356-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534513PMC
September 2015

Calcium homeostasis is altered in skeletal muscle of spontaneously hypertensive rats: cytofluorimetric and gene expression analysis.

Am J Pathol 2014 Oct 30;184(10):2803-15. Epub 2014 Jul 30.

Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy.

Hypertension is often associated with skeletal muscle pathological conditions related to function and metabolism. The mechanisms underlying the development of these pathological conditions remain undefined. Because calcium homeostasis is a biomarker of muscle function, we assessed whether it is altered in hypertensive muscles. We measured resting intracellular calcium and store-operated calcium entry (SOCE) in fast- and slow-twitch muscle fibers from normotensive Wistar-Kyoto rats and spontaneously hypertensive rats (SHRs) by cytofluorimetric technique and determined the expression of SOCE gene machinery by real-time PCR. Hypertension caused a phenotype-dependent dysregulation of calcium homeostasis; the resting intracellular calcium of extensor digitorum longus and soleus muscles of SHRs were differently altered with respect to the related muscle of normotensive animals. In addition, soleus muscles of SHR showed reduced activity of the sarcoplasmic reticulum and decreased sarcolemmal calcium permeability at rest and after SOCE activation. Accordingly, we found an alteration of the expression levels of some SOCE components, such as stromal interaction molecule 1, calcium release-activated calcium modulator 1, and transient receptor potential canonical 1. The hypertension-induced alterations of calcium homeostasis in the soleus muscle of SHRs occurred with changes of some functional outcomes as excitability and resting chloride conductance. We provide suitable targets for therapeutic interventions aimed at counterbalancing muscle performance decline in hypertension, and propose the reported calcium-dependent parameters as indexes to predict how the antihypertensive drugs could influence muscle function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajpath.2014.06.020DOI Listing
October 2014

Dual response of the KATP channels to staurosporine: a novel role of SUR2B, SUR1 and Kir6.2 subunits in the regulation of the atrophy in different skeletal muscle phenotypes.

Biochem Pharmacol 2014 Sep 3;91(2):266-75. Epub 2014 Jul 3.

Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", Via Orabona n 4, 70125 Bari, Italy. Electronic address:

We investigated on the role of the genes encoding for the ATP-sensitive K(+)-channel (KATP) subunits (SUR1-2A/B, Kir6.2) in the atrophy induced "in vitro" by staurosporine (STS) in different skeletal muscle phenotypes of mouse. Patch-clamp and gene expression experiments showed that the expression/activity of the sarcolemma KATP channel subunits was higher in the fast-twitch than in the slow-twitch fibers. After 1 to 3h of incubation time, the STS (2.14×10(-6)M) treatment enhanced the expression/activity of the SUR2B, SUR1 and Kir6.2 subunit genes, but not SUR2A, in the slow-twitch muscle fibers, induced the caspase-3-9, Atrogin-1 and Murf-1 gene expression without affecting protein content. After 3 to 6h, the STS-related atrophy markedly down-regulated the SUR2B, SUR1 and Kir6.2 genes reducing the KATP currents and reduced the protein content/muscle weight ratio of the slow-twitch muscle by -36.4±6% (p<0.05). After 6 to 24h, no additional changes of the SUR1-2B and Kir6.2 gene expression and muscle protein were observed. In the fast-twitch muscles, STS mildly affected the atrophic genes and protein content, but potentiated the KATP currents down-regulating the Bnip-3 gene. Diazoxide (250-500×10(-6)M), a SUR1-2B/Kir6.2 channel opener, prevented the protein loss induced by STS in the slow-twitch muscle after 6h showing an EC50 of 1.35×10(-7)M and Emax of 75%, down-regulated the caspase-9 gene and enhanced the KATP currents. The enhanced expression/activity of the SUR2B, SUR1 and Kir6.2 genes are cytoprotective against STS-induced atrophy in the slow-twitch muscle; their reduced expression/activity is associated with proteolysis and atrophy in skeletal muscle.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2014.06.023DOI Listing
September 2014

Paracrine effects of IGF-1 overexpression on the functional decline due to skeletal muscle disuse: molecular and functional evaluation in hindlimb unloaded MLC/mIgf-1 transgenic mice.

PLoS One 2014 3;8(6):e65167. Epub 2013 Jun 3.

Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy.

Slow-twitch muscles, devoted to postural maintenance, experience atrophy and weakness during muscle disuse due to bed-rest, aging or spaceflight. These conditions impair motion activities and can have survival implications. Human and animal studies demonstrate the anabolic role of IGF-1 on skeletal muscle suggesting its interest as a muscle disuse countermeasure. Thus, we tested the role of IGF-1 overexpression on skeletal muscle alteration due to hindlimb unloading (HU) by using MLC/mIgf-1 transgenic mice expressing IGF-1 under the transcriptional control of MLC promoter, selectively activated in skeletal muscle. HU produced atrophy in soleus muscle, in terms of muscle weight and fiber cross-sectional area (CSA) reduction, and up-regulation of atrophy gene MuRF1. In parallel, the disuse-induced slow-to-fast fiber transition was confirmed by an increase of the fast-type of the Myosin Heavy Chain (MHC), a decrease of PGC-1α expression and an increase of histone deacetylase-5 (HDAC5). Consistently, functional parameters such as the resting chloride conductance (gCl) together with ClC-1 chloride channel expression were increased and the contractile parameters were modified in soleus muscle of HU mice. Surprisingly, IGF-1 overexpression in HU mice was unable to counteract the loss of muscle weight and the decrease of fiber CSA. However, the expression of MuRF1 was recovered, suggesting early effects on muscle atrophy. Although the expression of PGC-1α and MHC were not improved in IGF-1-HU mice, the expression of HDAC5 was recovered. Importantly, the HU-induced increase of gCl was fully contrasted in IGF-1 transgenic mice, as well as the changes in contractile parameters. These results indicate that, even if local expression does not seem to attenuate HU-induced atrophy and slow-to-fast phenotype transition, it exerts early molecular effects on gene expression which can counteract the HU-induced modification of electrical and contractile properties. MuRF1 and HDAC5 can be attractive therapeutic targets for pharmacological countermeasures and then deserve further investigations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0065167PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670938PMC
January 2015

Adaptation of mouse skeletal muscle to long-term microgravity in the MDS mission.

PLoS One 2012 28;7(3):e33232. Epub 2012 Mar 28.

Department of Biomedical Sciences, University of Padova, Padova, Italy.

The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5-20 day) spaceflights. The mice drawer system (MDS) program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days) exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1) into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL) muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca(2+)-activated K(+) channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0033232PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314659PMC
August 2012

In-vivo administration of CLC-K kidney chloride channels inhibitors increases water diuresis in rats: a new drug target for hypertension?

J Hypertens 2012 Jan;30(1):153-67

Section of Pharmacology, Department of Pharmacobiology, Faculty of Pharmacy, University of Bari, Bari, Italy.

Objective: The human kidney-specific chloride channels ClC-Ka (rodent ClC-K1) and ClC-Kb (rodent ClC-K2) are important determinants of renal function, participating to urine concentration and blood pressure regulation mechanisms. Here we tested the hypothesis that these chloride channels could represent new drug targets for inducing diuretic and antihypertensive effects.

Methods: To this purpose, the CLC-K blockers benzofuran derivatives MT-189 and RT-93 (10, 50, 100 mg/kg), were acutely administered by gavage in Wistar rats, and pharmacodynamic and pharmacokinetic parameters determined by functional, bioanalytical, biochemical and molecular biology assays.

Results: Plasma concentration values for MT-189 and RT-93 were indicative of good bioavailability. Both MT-189 and RT-93 dose-dependently increased urine volume without affecting electrolyte balance. A comparable reduction of SBP was observed in rats after MT-189, RT-93 or furosemide administration. Benzofuran derivatives treatment did not affect kidney CLC-K mRNA level or inner medulla osmolality, whereas a significant vasopressin-independent down-regulation of aquaporin water channel type 2 was observed at protein and transcriptional levels. In rats treated with benzofuran derivatives, the observed polyuria was mainly water diuresis; this finding indirectly supports a cross-talk between chloride and water transport in nephron. Moreover, preliminary in-vitro evaluation of the drugs capability to cross the blood-inner ear barrier suggests that these compounds have a limited ability to induce potential auditory side effects.

Conclusion: CLC-K blockers may represent a new class of drugs for the treatment of conditions associated with expanded extracellular volume, with a hopeful high therapeutic potential for hypertensive patients carrying ClC-K gain-of-function polymorphisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/HJH.0b013e32834d9eb9DOI Listing
January 2012

Potential benefits of taurine in the prevention of skeletal muscle impairment induced by disuse in the hindlimb-unloaded rat.

Amino Acids 2012 Jul 11;43(1):431-45. Epub 2011 Oct 11.

Section of Pharmacology, Department of Pharmacobiology, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy.

Hindlimb unloading (HU) in rats induces severe atrophy and a slow-to-fast phenotype transition in postural slow-twitch muscles, as occurs in human disuse conditions, such as spaceflight or bed rest. In rats, a reduction of soleus muscle weight and a decrease of cross-sectional area (CSA) were observed as signs of atrophy. An increased expression of the fast-isoform of myosin heavy chain (MHC) showed the phenotype transition. In parallel the resting cytosolic calcium concentration (restCa) was decreased and the resting chloride conductance (gCl), which regulates muscle excitability, was increased toward the values of the fast-twitch muscles. Here, we investigated the possible role of taurine, which is known to modulate calcium homeostasis and gCl, in the restoration of muscle impairment due to 14-days-HU. We found elevated taurine content and higher expression of the taurine transporter TauT in the soleus muscle as compared to the fast-twitch extensor digitorum longus (EDL) muscle of control rats. Taurine level was reduced in the HU soleus muscle, although, TauT expression was not modified. Taurine oral supplementation (5 g/kg) fully prevented this loss, and preserved resting gCl and restCa together with the slow MHC phenotype. Taurine supplementation did not prevent the HU-induced drop of muscle weight or fiber CSA, but it restored the expression of MURF-1, an atrophy-related gene, suggesting a possible early protective effect of taurine. In conclusion, taurine prevented the HU-induced phenotypic transition of soleus muscle and might attenuate the atrophic process. These findings argue for the beneficial use of taurine in the treatment of disuse-induced muscle dysfunction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00726-011-1099-4DOI Listing
July 2012

Antioxidant treatment of hindlimb-unloaded mouse counteracts fiber type transition but not atrophy of disused muscles.

Pharmacol Res 2010 Jun 29;61(6):553-63. Epub 2010 Jan 29.

Section of Pharmacology, Department of Pharmacobiology, Faculty of Pharmacy, University of Bari, Via Orabona 4 - campus, 70125 Bari, Italy.

Oxidative stress was proposed as a trigger of muscle impairment in various muscle diseases. The hindlimb-unloaded (HU) rodent is a model of disuse inducing atrophy and slow-to-fast transition of postural muscles. Here, mice unloaded for 14 days were chronically treated with the selective antioxidant trolox. After HU, atrophy was more pronounced in the slow-twitch soleus muscle (Sol) than in the fast-twitch gastrocnemius and tibialis anterior muscles, and was absent in extensor digitorum longus muscle. In accord with the phenotype transition, HU Sol showed a reduced expression of myosin heavy chain type 2A (MHC-2A) and increase in MHC-2X and MHC-2B isoforms. In parallel, HU Sol displayed an increased sarcolemma chloride conductance related to an increased expression of ClC-1 channels, changes in excitability parameters, a positive shift of the mechanical threshold, and a decrease of the resting cytosolic calcium concentration. Moreover, the level of lipoperoxidation increased proportionally to the degree of atrophy of each muscle type. As expected, trolox treatment fully prevented oxidative stress in HU mice. Atrophy was not prevented but the drug significantly attenuated Sol phenotypic transition and excitability changes. Trolox treatment had no effect on control mice. These results suggest possible benefits of antioxidants in protecting muscle against disuse.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2010.01.012DOI Listing
June 2010