Publications by authors named "Gisela Soboll Hussey"

21 Publications

  • Page 1 of 1

Identification of Host Factors Associated with the Development of Equine Herpesvirus Myeloencephalopathy by Transcriptomic Analysis of Peripheral Blood Mononuclear Cells from Horses.

Viruses 2021 02 24;13(3). Epub 2021 Feb 24.

Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA.

Equine herpesvirus-1 is the cause of respiratory disease, abortion, and equine herpesvirus myeloencephalopathy (EHM) in horses worldwide. EHM affects as many as 14% of infected horses and a cell-associated viremia is thought to be central for EHM pathogenesis. While EHM is infrequent in younger horses, up to 70% of aged horses develop EHM. The aging immune system likely contributes to EHM pathogenesis; however, little is known about the host factors associated with clinical EHM. Here, we used the "old mare model" to induce EHM following EHV-1 infection. Peripheral blood mononuclear cells (PBMCs) of horses prior to infection and during viremia were collected and RNA sequencing with differential gene expression was used to compare the transcriptome of horses that did (EHM group) and did not (non-EHM group) develop clinical EHM. Interestingly, horses exhibiting EHM did not show respiratory disease, while non-EHM horses showed significant respiratory disease starting on day 2 post infection. Multiple immune pathways differed in EHM horses in response to EHV-1. These included an upregulation of IL-6 gene expression, a dysregulation of T-cell activation through AP-1 and responses skewed towards a T-helper 2 phenotype. Further, a dysregulation of coagulation and an upregulation of elements in the progesterone response were observed in EHM horses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/v13030356DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7995974PMC
February 2021

Safety and Efficacy of Felid Herpesvirus-1 Deletion Mutants in Cats.

Viruses 2021 01 22;13(2). Epub 2021 Jan 22.

Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, MI 48824, USA.

Felid herpesvirus-1 (FeHV-1) is an important respiratory and ocular pathogen of cats and current vaccines are limited in duration and efficacy because they do not prevent infection, viral nasal shedding and latency. To address these shortcomings, we have constructed FeHV-1 gE-TK- and FeHV-1 PK- deletion mutants (gE-TK- and PK-) using bacterial artificial chromosome (BAC) mutagenesis and shown safety and immunogenicity in vitro. Here, we compare the safety and efficacy of a prime boost FeHV-1 gE-TK- and FeHV-1 PK- vaccination regimen with commercial vaccination in cats. Cats in the vaccination groups were vaccinated at 3-week intervals and all cats were challenge infected 3 weeks after the last vaccination. Evaluations included clinical signs, nasal shedding, virus neutralizing antibodies (VN), cytokine mRNA gene expression, post-mortem histology and detection of latency establishment. Vaccination with gE-TK- and PK- mutants was safe and resulted in significantly reduced clinical disease scores, pathological changes, viral nasal shedding, and viral DNA in the trigeminal ganglia (the site of latency) following infection. Both mutants induced VN antibodies and interferons after immunization. In addition, after challenge infection, we observed a reduction of IL-1β expression, and modulation of TNFα, TGFβ and IL10 expression. In conclusion, this study shows the merits of using FeHV-1 deletion mutants for prevention of FeHV-1 infection in cats.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/v13020163DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911815PMC
January 2021

Transcriptomic Profiling of Equine and Viral Genes in Peripheral Blood Mononuclear Cells in Horses during Equine Herpesvirus 1 Infection.

Pathogens 2021 Jan 7;10(1). Epub 2021 Jan 7.

Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA.

Equine herpesvirus 1 (EHV-1) affects horses worldwide and causes respiratory disease, abortions, and equine herpesvirus myeloencephalopathy (EHM). Following infection, a cell-associated viremia is established in the peripheral blood mononuclear cells (PBMCs). This viremia is essential for transport of EHV-1 to secondary infection sites where subsequent immunopathology results in diseases such as abortion or EHM. Because of the central role of PBMCs in EHV-1 pathogenesis, our goal was to establish a gene expression analysis of host and equine herpesvirus genes during EHV-1 viremia using RNA sequencing. When comparing transcriptomes of PBMCs during peak viremia to those prior to EHV-1 infection, we found 51 differentially expressed equine genes (48 upregulated and 3 downregulated). After gene ontology analysis, processes such as the interferon defense response, response to chemokines, the complement protein activation cascade, cell adhesion, and coagulation were overrepresented during viremia. Additionally, transcripts for EHV-1, EHV-2, and EHV-5 were identified in pre- and post-EHV-1-infection samples. Looking at micro RNAs (miRNAs), 278 known equine miRNAs and 855 potentially novel equine miRNAs were identified in addition to 57 and 41 potentially novel miRNAs that mapped to the EHV-2 and EHV-5 genomes, respectively. Of those, 1 EHV-5 and 4 equine miRNAs were differentially expressed in PBMCs during viremia. In conclusion, this work expands our current knowledge about the role of PBMCs during EHV-1 viremia and will inform the focus on future experiments to identify host and viral factors that contribute to clinical EHM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/pathogens10010043DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825769PMC
January 2021

Viral Load and Cell Tropism During Early Latent Equid Herpesvirus 1 Infection Differ Over Time in Lymphoid and Neural Tissue Samples From Experimentally Infected Horses.

Front Vet Sci 2020 4;7:621. Epub 2020 Sep 4.

Equine Hospital, Division of Medicine and Reproduction, Center for Clinical Veterinary Medicine, Ludwig-Maximilians University, Munich, Germany.

Upper respiratory tract infections with Equid Herpesvirus 1 (EHV-1) typically result in a peripheral blood mononuclear cell-associated viremia, which can lead to vasculopathy in the central nervous system. Primary EHV-1 infection also likely establishes latency in trigeminal ganglia (TG) via retrograde axonal transport and in respiratory tract-associated lymphatic tissue. However, latency establishment and reactivation are poorly understood. To characterize the pathogenesis of EHV-1 latency establishment and maintenance, two separate groups of yearling horses were experimentally infected intranasally with EHV-1, strain Ab4, and euthanized 30 days post infection (dpi), ( = 9) and 70 dpi ( = 6). During necropsy, TG, sympathetic trunk (ST), retropharyngeal and mesenteric lymph nodes (RLn, MesLn) and kidney samples were collected. Viral DNA was detected by quantitative PCR (qPCR) in TG, ST, RLn, and MesLn samples in horses 30 and 70 dpi. The number of positive TG, RLn and MesLn samples was reduced when comparing horses 30 and 70 dpi and the viral copy number in TG and RLn significantly declined from 30 to 70 dpi. EHV-1 late gene glycoprotein B reverse transcriptase PCR and IHC results for viral protein were consistently negative, thus lytic replication was excluded in the present study. Mild inflammation could be detected in all neural tissue samples and inflammatory infiltrates mainly consisted of CD3+ T-lymphocytes (T-cells), frequently localized in close proximity to neuronal cell bodies. To identify latently infected cell types, hybridization (ISH, RNAScope®) detecting viral DNA was used on selected qPCR- positive neural tissue sections. In ganglia 30 dpi, EHV-1 ISH signal was located in the neurons of TG and ST, but also in non-neuronal support or interstitial cells surrounding the neuron. In contrast, distinct EHV-1 signal could only be observed in neurons of TG 70 dpi. Overall, detection of latent EHV-1 in abdominal tissue samples and non-neuronal cell localization suggests, that EHV-1 uses T-cells during viremia as alternative route toward latency locations in addition to retrograde neuronal transport. We therefore hypothesize that EHV-1 follows the same latency pathways as its close relative human pathogen Varicella Zoster Virus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fvets.2020.00621DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7499125PMC
September 2020

Characterization of feline herpesvirus-1 deletion mutants in tissue explant cultures.

Virus Res 2020 07 19;284:197981. Epub 2020 Apr 19.

Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, MI 48824, USA. Electronic address:

Feline herpesvirus-1 (FHV-1) is the primary cause of viral respiratory and ocular disease in cats. While commercial vaccines can provide clinical protection, they do not protect from infection or prevent latency. Moreover, they are not safe for intranasal administration. Our overall objective is to develop a new mucosal vaccine against FHV-1 disease to address these shortcomings. Feline herpesvirus-1 deletion mutants of glycoprotein C (gC-), gE (gE-), US3-encoded serine/threonine protein kinase (PK-), and both gE and thymidine kinase (gE-TK-) were generated by bacterial artificial chromosome (BAC) mutagenesis. Tracheal tissue explants from eight cats were used to compare the pattern of viral infection and associated tissue damage, as well as virus spread through the basement membrane following inoculation with wild-type virus (WT), and gE-, gE-TK-, PK-, and gC- mutants. Tissues were collected at 24, 48, or 72  hours post-inoculation (hpi) followed by immunohistochemistry (IHC) for FHV-1. Histological changes were graded based on the distribution of virus infected cells and the severity of tissue damage. Inoculations with the WT virus resulted in maximal scores at 72 hpi both at a multiplicity of infection (MOI) of 1 and 0.1. Inoculation with the gE- mutant produced scores similar to scores of explants inoculated with the WT virus at 24 and 48 hpi, but scores were significantly decreased at 72 hpi. Explants inoculated with the gE-TK- mutant showed significantly decreased scores at all time points. Further, the majority of explants inoculated with the PK- mutant resulted in scores of zero at all time points, regardless of MOI. Finally, inoculation with WT resulted in significant stromal invasion below the infected epithelium, while stromal invasion was observed in less than 50 % of the samples following inoculation with gE-, gE-TK-, PK-, or gC- mutants and confined closely to the area surrounding the infected epithelium. In conclusion, the gE-TK- and PK- mutants exhibited significantly reduced virulence, tissue damage and spread to the underlying stroma, suggesting that they may be good vaccine candidates for in vivo testing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virusres.2020.197981DOI Listing
July 2020

Editorial: Current Research in Equid Herpesvirus Type-1 (EHV-1).

Front Vet Sci 2019 10;6:492. Epub 2020 Jan 10.

Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fvets.2019.00492DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6965053PMC
January 2020

Key Determinants in the Pathogenesis of Equine Herpesvirus 1 and 4 Infections.

Vet Pathol 2019 09;56(5):656-659

1 Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Veterinary Medical Center, Michigan State University, MI, USA.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/0300985819849498DOI Listing
September 2019

Histopathologic Findings Following Experimental Equine Herpesvirus 1 Infection of Horses.

Front Vet Sci 2019 4;6:59. Epub 2019 Mar 4.

Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States.

Histopathological differences in horses infected with equine herpesvirus type 1 (EHV-1) of differing neuropathogenic potential [wild-type (Ab4), polymerase mutant (Ab4 N752), EHV-1/4 gD mutant (Ab4 gD4)] were evaluated to examine the impact of viral factors on clinical disease, tissue tropism and pathology. Three of 8 Ab4 infected horses developed Equine Herpesvirus Myeloencephalopathy (EHM) requiring euthanasia of 2 horses on day 9 post-infection. None of the other horses showed neurologic signs and all remaining animals were sacrificed 10 weeks post-infection. EHM horses had lymphohistiocytic vasculitis and lymphocytic infiltrates in the lungs, spinal cord, endometrium and eyes. EHV-1 antigen was detected within the eyes and spinal cord. In 3/6 of the remaining Ab4 infected horses, 4/9 Ab4 N752 infected horses, and 8/8 Ab4 gD4 infected horses, choroiditis was observed. All males had interstitial lymphoplasmacytic and/or histiocytic orchitis and EHV-1 antigen was detected. In conclusion, only animals sacrificed due to EHM developed overt vasculitis in the CNS and the eye. Mild choroiditis persisted in many animals and appeared to be more common in Ab4 gD4 infected animals. Finally, we report infiltrates and changes in the reproductive organs of all males associated with EHV-1 antigen. While the exact significance of these changes is unclear, these findings raise concern for long-term effects on reproduction and prolonged shedding of virus through semen.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fvets.2019.00059DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409500PMC
March 2019

Viral replication and innate immunity of feline herpesvirus-1 virulence-associated genes in feline respiratory epithelial cells.

Virus Res 2019 04 20;264:56-67. Epub 2019 Feb 20.

Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, MI 48824, USA. Electronic address:

Feline herpesvirus-1 (FHV-1) infection occurs worldwide and is a leading cause of respiratory and ocular diseases in cats. Current vaccines reduce the severity of symptoms but do not prevent infection and, therefore, do not provide defense against an establishment of latency and reactivation. We hypothesize that immunomodulation of FHV-1 is the cause of lack in protection and that deletion of virulence/immune modulatory genes of FHV-1 will enhance safety and immunogenicity. Our objective was to use feline respiratory epithelial cell (FREC) cultures to define in vitro growth characteristics and immunomodulation resulting from infection of FRECs with the virulent FHV-1 strain C27 (WT) and glycoprotein C-deletion (gC-), glycoprotein E-deletion (gE-), serine/threonine protein kinase-deletion (PK-), as well as gE and thymidine kinase-double-deletion (gE-TK-) mutants generated by bacterial artificial chromosome mutagenesis. Differentiated FRECs were mock inoculated or inoculated with WT, gC-, gE-, PK-, or gE-TK- mutants. Virus titration and real-time quantitative PCR assays were performed on samples collected at 1 hpi followed by 24 h intervals between 24 and 96 hpi to determine growth kinetics. Real-time PCR was used to quantitate IFNα, TNFα, IL-1β, IL-10, and TGFβ-specific mRNA levels. Immunoassays were performed to measure the protein levels of subsets of cytokines/chemokines secreted by FRECs. Inoculation of FRECs with gE-TK- resulted in significantly lower end-point titers than inoculation with WT or gE-. Both PK- and gC- inoculated FRECs also produced significantly lower end-point titers at 96 hpi than WT. Overall, intracellular virus titers were higher than those of extracellular virus. PCR results for viral DNA paralleled the virus titration results. Further, in contrast to WT inoculation, an increase in IFNα and IL-10 mRNA expression was not observed following inoculation with gE-TK- and PK-, but inoculation with gE-TK- and PK- did result in increased TGFβ expression in FRECs compared to responses following infection with WT. Moreover, gE-TK- and PK- blocked the inhibition of IL-8 and neutrophil chemoattractant (KC), which was observed following inoculation with WT. In summary, the results obtained in FRECs may be used to predict the safety and immunogenicity characteristics of these mutants in vivo. Our study highlights the value of the FREC system for studying replication kinetics/immune modulation factors of FHV-1 and screening prospective vaccine candidates before their use in experimental cats.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virusres.2019.02.013DOI Listing
April 2019

Abortigenic but Not Neurotropic Equine Herpes Virus 1 Modulates the Interferon Antiviral Defense.

Front Cell Infect Microbiol 2018 12;8:312. Epub 2018 Sep 12.

Department of Virology, Immunology and Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.

Equine herpesvirus 1 (EHV1) is considered as a major pathogen of , causing symptoms from mild respiratory disease to late-term abortion and neurological disorders. Different EHV1 strains circulating in the field have been characterized to be of abortigenic or neurovirulent phenotype. Both variants replicate in a plaque-wise manner in the epithelium of the upper respiratory tract (URT), where the abortigenic strains induce more prominent viral plaques, compared to the neurovirulent strains. Considering the differences in replication at the URT, we hypothesized that abortigenic strains may show an increased ability to modulate the type I IFN secretion/signaling pathway, compared to strains that display the neurovirulent phenotype. Here, we analyze IFN levels induced by abortigenic and neurovirulent EHV1 using primary respiratory epithelial cells (EREC) and respiratory mucosa explants. Similar levels of IFNα (~70 U/ml) were detected in explants inoculated with both types of EHV1 strains from 48 to 72 hpi. Second, EREC and mucosa explants were treated with recombinant equine IFNα (rEqIFNα) or Ruxolitinib (Rux), an IFN signaling inhibitor, prior to and during inoculation with abortigenic or neurovirulent EHV1. Replication of both EHV1 variants was suppressed by rEqIFNα. Further, addition of Rux increased replication in a concentration-dependent manner, indicating an IFN-susceptibility for both variants. However, in two out of three horses, at a physiological concentration of 100 U/ml of rEqIFNα, an increase in abortigenic EHV1 replication was observed compared to 10 U/ml of rEqIFNα, which was not observed for the neurovirulent strains. Moreover, in the presence of Rux, the plaque size of the abortigenic variants remained unaltered, whereas the typically smaller viral plaques induced by the neurovirulent variants became larger. Overall, our results demonstrate the importance of IFNα in the control of EHV1 replication in the URT for both abortigenic and neurovirulent variants. In addition, our findings support the speculation that abortigenic variants of EHV1 may have developed anti-IFN mechanisms that appear to be absent or less pronounced in neurovirulent EHV1 strains.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fcimb.2018.00312DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6144955PMC
August 2019

Characterization of respiratory dendritic cells from equine lung tissues.

BMC Vet Res 2017 Nov 6;13(1):313. Epub 2017 Nov 6.

Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 784 Wilson Rd, A13, East Lansing, MI, 48824, USA.

Background: Dendritic cells (DCs) are professional antigen-presenting cells that have multiple subpopulations with different phenotypes and immune functions. Previous research demonstrated that DCs have strong potential for anti-viral defense in the host. However, viruses including alphaherpesvirinae have developed strategies to interfere with the function or maturation of DCs, causing immune dysfunction and avoidance of pathogen elimination. The goal of the present study was to isolate and characterize equine lung-derived DCs (L-DCs) for use in studies of respiratory viruses and compare their features with equine blood-derived DCs (B-DCs), which are currently used for these types of studies.

Results: We found that L-DCs were morphologically similar to B-DCs. Overall, B-DCs demonstrated higher expression of CD86 and CD172α than L-DCs, but both cell types expressed high levels of MHC class II and CD44, as well as moderate amounts of CD163, CD204, and Bla36. In contrast, the endocytic activity of L-DCs was elevated compared to that of B-DCs. Finally, mononuclear cells isolated from lung (L-MCs), which are used as precursors for L-DCs, expressed more antigen-presenting cell-associated markers such as MHC class II and CD172α compared to their counterparts from blood.

Conclusions: Our results indicate that L-DCs may be in an earlier differentiation stage compared to B-DCs. Concurrent with this observation, L-MCs possessed significantly more antigen-uptake capacity compared to their counterparts from blood. It is likely that L-DCs play an important role in antigen uptake and processing of respiratory pathogens and are major contributors to respiratory tract immunity and may be ideal tools for future in vitro or ex vivo studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12917-017-1240-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5674750PMC
November 2017

Viral genes and cellular markers associated with neurological complications during herpesvirus infections.

J Gen Virol 2017 Jun 20;98(6):1439-1454. Epub 2017 Jun 20.

Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA.

Despite the importance of neurological disorders associated with herpesviruses, the mechanism by which these viruses influence the central nervous system (CNS) has not been definitively established. Owing to the limitations of studying neuropathogenicity of human herpesviruses in their natural host, many aspects of their pathogenicity and immune response are studied in animal models. Here, we present an important model system that enables studying neuropathogenicity of herpesviruses in the natural host. Equine herpesvirus type 1 (EHV-1) is an alphaherpesvirus that causes a devastating neurological disease (EHV-1 myeloencephalopathy; EHM) in horses. Like other alphaherpesviruses, our understanding of virus neuropathogenicity in the natural host beyond the essential role of viraemia is limited. In particular, information on the role of different viral proteins for virus transfer to the spinal cord endothelium in vivo is lacking. In this study, the contribution of two viral proteins, DNA polymerase (ORF30) and glycoprotein D (gD), to the pathogenicity of EHM was addressed. Furthermore, different cellular immune markers, including alpha-interferon (IFN-α), gamma-interferon (IFN-γ), interleukin-10 (IL-10) and interleukin-1 beta (IL-1β), were identified to play a role during the course of the disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1099/jgv.0.000773DOI Listing
June 2017

Use of a feline respiratory epithelial cell culture system grown at the air-liquid interface to characterize the innate immune response following feline herpesvirus 1 infection.

Virus Res 2016 Mar 18;214:39-48. Epub 2016 Jan 18.

Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, 784 Wilson Road, East Lansing, MI 48824, USA. Electronic address:

Infection with feline herpesvirus-1 (FHV-1) accounts for 50% of viral upper respiratory diseases in domestic cats and is a significant cause of ocular diseases. Despite the clinical significance and high prevalence of FHV-1 infection, currently available vaccines cannot completely protect cats from infection and lifelong latency. FHV-1 infects via the mucous membranes and replicates in respiratory epithelial cells, but very little is known about the early innate immunity at this site. To address questions about immunity to FHV-1, feline respiratory epithelial cells cultured at air-liquid interface (ALI-FRECs) were established by collecting respiratory tracts from 6 healthy cats after euthanasia. Cells were isolated, cultured and characterized histologically and immunologically before infection with FHV-1. The expression of Toll-like receptors (TLRs), cytokine and chemokine responses were measured by real time PCR. ALI-FRECs morphologically resembled the natural airways of cats with multilayered columnar epithelial cells and cilia. Immunological properties of the natural airways were maintained in ALI-FRECs, as evidenced by the expression of TLRs, cytokines, chemokines, interferons, beta-defensins, and other regulatory genes. Furthermore, ALI-FRECs were able to support infection and replication of FHV-1, as well as modulate transcriptional regulation of various immune genes in response to infection. IL-1β and TNFα were increased in ALI-FRECs by 24hpi, whereas expression levels of IFN-α and TLR9 were not increased until 36hpi. In contrast, TLR3, GM-CSF and TGF-1β expression was down-regulated at 36hpi. The data presented show the development of a system ideal for investigating the molecular pathogenesis and immunity of FHV-1 or other respiratory pathogens.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virusres.2016.01.006DOI Listing
March 2016

Equine herpesvirus 1 myeloencephalopathy.

Vet Clin North Am Equine Pract 2014 Dec 7;30(3):489-506. Epub 2014 Oct 7.

Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 736 Wilson Road, East Lansing, MI 48824, USA.

Equine myeloencephalopathy (EHM), an uncommon manifestation of equine herpesvirus 1 (EHV-1) infection, can cause devastating losses on individual farms, boarding stables, veterinary hospitals, and show and racing venues. An improved understanding of EHM has emerged from experimental studies and from data collected during field outbreaks at riding schools, racetracks, horse shows, and veterinary hospitals throughout North America and Europe. These outbreaks have highlighted the contagious nature of EHV-1 and have prompted a reevaluation of diagnostic procedures, treatment modalities, preventative measures, and biosecurity protocols for this disease. This article focuses on recent data related to the cause, epidemiology, pathogenesis, immunity, diagnosis, treatment, and prevention of EHV-1 infection with emphasis on EHM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cveq.2014.08.006DOI Listing
December 2014

Equine herpesvirus type 1 pUL56 modulates innate responses of airway epithelial cells.

Virology 2014 Sep 19;464-465:76-86. Epub 2014 Jul 19.

North Carolina State University, Raleigh, NC, USA.

Recently, the product of equine herpesvirus type 1 (EHV-1) ORF1, a homolog to HSV-1 pUL56, was shown to modulate MHC-I expression and innate immunity. Here, we investigated modulation of respiratory epithelial immunity by EHV-1 pUL56 and compared responses to those of PBMCs, which are important target cells that allow cell-associated EHV-1 viremia. The salient observations are as follows: (i) EHV-1 significantly down-modulated MHC-I and MHC-II expression in equine respiratory epithelial cells (ERECs). MHC-I expression remained unaffected in PBMCs and MHC-II expression was increased. (ii) Infection with an EHV-1 ORF1 deletion mutant partially restored MHC-I and MHC-II expression and altered IFN-alpha and IL-10 mRNA expression. (iii) Deletion of EHV-1 ORF1 also significantly increased chemokine expression and chemotaxis of monocytes and neutrophils in ERECs. Collectively, these results suggest a role for EHV-1 pUL56 in modulation of antigen presentation, cytokine expression and chemotaxis at the respiratory epithelium, but not in PBMC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virol.2014.05.023DOI Listing
September 2014

Innate immune responses of airway epithelial cells to infection with equine herpesvirus-1.

Vet Microbiol 2014 May 3;170(1-2):28-38. Epub 2014 Feb 3.

Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 W. Drake Road, Fort Collins, CO 80523, USA.

Equine herpesvirus-1 (EHV-1) is the cause of respiratory disease, abortion and myelitis in horses worldwide. Protection following infection or vaccination is typically incomplete and this lack of protective immunity is thought to be due to the immunomodulatory properties of EHV-1. EHV-1 immune modulation is likely initiated early in the infection cycle at the respiratory epithelium, but to date, immunity to EHV-1 at the epithelial cell barrier remains poorly characterized. Thus, the purpose of this study was to use a recently established primary equine respiratory epithelial cell culture (EREC) system to characterize innate immunity to EHV-1. Differentiated ERECs were inoculated with a neuropathogenic strain of EHV-1 and cytokine responses were determined using quantitative real-time polymerase chain reaction and ELISA. Major histocompatibility complex (MHC)-I and MHC-II as well as toll-like receptor (TLR)3 and TLR9 protein expression were examined using fluorescence activated cell-sorting analysis and chemotaxis of neutrophils and monocytes were evaluated using chemotaxis assays. Infection with EHV-1 resulted in increased expression of TLR3 and 9 as well as inflammatory cytokines (IL-1, TNF-alpha, IFN-alpha, and IL-6) and chemokines (IL-8, MCP-1). In contrast, EHV-1 infection caused marked decreases of MHC-I and MHC-II expression as well as a reduction in IFN-gamma production. In summary, these results provide an initial characterization of the early immune response to EHV-1 at the epithelial cell barrier and show that, while EHV-1 maintains induction of an inflammatory response, it causes an attenuation of IFN-gamma responses and down-modulates expression of MHC-I and MHC-II, which are important molecules for antigen presentation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2014.01.018DOI Listing
May 2014

Experimental infection with equine herpesvirus type 1 (EHV-1) induces chorioretinal lesions.

Vet Res 2013 Dec 5;44:118. Epub 2013 Dec 5.

Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA.

Equine herpesvirus myeloencephalitis (EHM) remains one of the most devastating manifestations of equine herpesvirus type 1 (EHV-1) infection but our understanding of its pathogenesis remains rudimentary, partly because of a lack of adequate experimental models. EHV-1 infection of the ocular vasculature may offer an alternative model as EHV-1-induced chorioretinopathy appears to occur in a significant number of horses, and the pathogenesis of EHM and ocular EHV-1 may be similar. To investigate the potential of ocular EHV-1 as a model for EHM, and to determine the frequency of ocular EHV-1, our goal was to study: (1) Dissemination of virus following acute infection, (2) Development and frequency of ocular lesions following infection, and (3) Utility of a GFP-expressing virus for localization of the virus in vivo. Viral antigen could be detected following acute infection in ocular tissues and the central nervous system (experiment 1). Furthermore, EHV-1 infection resulted in multifocal choroidal lesions in 90% (experiment 2) and 50% (experiment 3) of experimentally infected horses, however ocular lesions did not appear in vivo until between 3 weeks and 3 months post-infection. Taken together, the timing of the appearance of lesions and their ophthalmoscopic features suggest that their pathogenesis may involve ischemic injury to the chorioretina following viremic delivery of virus to the eye, mirroring the vascular events that result in EHM. In summary, we show that the frequency of ocular EHV-1 is 50-90% following experimental infection making this model attractive for testing future vaccines or therapeutics in an immunologically relevant age group.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1297-9716-44-118DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4028784PMC
December 2013

Strain impact on equine herpesvirus type 1 (EHV-1) abortion models: viral loads in fetal and placental tissues and foals.

Vaccine 2012 Oct 31;30(46):6564-72. Epub 2012 Aug 31.

Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.

Equine herpesvirus-1 (EHV-1) continues to cause both sporadic and epidemic abortions despite extensive vaccination. Lack of progress in the development of protective vaccines may be hindered by the lack of equine abortion models that employ contemporary EHV-1 strains. The objective of our experiments was to compare a contemporary EHV-1 strain with a previously described challenge strain, and to quantify EHV-1 loads in various maternal and fetal tissues. Infection experiments were performed in two groups of 7 pregnant pony mares at 270-290 days of gestation with a contemporary EHV-1 strain (University of Findlay 2003 isolate - OH03) or an EHV-1 strain isolated over 30 years ago, and previously described in abortion models (Ab4). All mares in both groups exhibited nasal viral shedding and viremia. Infection with OH03 resulted in 1/7 abortion and infection with Ab4 resulted in 5/7 abortions. In the OH03 challenge, placentas of foals delivered at term showed little detectable virus, while the aborted fetus expressed high levels of virus infection in the spleen and liver, lower levels in the lung and thymus, and lowest levels in the chorioallantois. After Ab4 challenge, high viral loads were detected in fetal and placental tissues in abortions. In the two normal deliveries, the chorioallantois contained virus levels comparable with the chorioallantois of aborted foals and both foals shed EHV-1 starting on day 4 of life, but were clinically healthy. Our results demonstrate the continued importance of strain selection for abortion models, and this study is the first report of viral load quantification using contemporary methods. Extremely high EHV-1 loads in decidua from abortions illustrate the infection risk posed to other horses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2012.08.046DOI Listing
October 2012

Equine herpesvirus-1: what are we still missing?

Vet J 2012 Aug 26;193(2):309-10. Epub 2012 Jun 26.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tvjl.2012.05.012DOI Listing
August 2012

Evaluation of immune responses following infection of ponies with an EHV-1 ORF1/2 deletion mutant.

Vet Res 2011 Feb 7;42:23. Epub 2011 Feb 7.

Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 W, Drake Rd, Fort Collins, Colorado 80523, USA.

Equine herpesvirus-1 (EHV-1) infection remains a significant problem despite the widespread use of vaccines. The inability to generate a protective immune response to EHV-1 vaccination or infection is thought to be due to immunomodulatory properties of the virus, and the ORF1 and ORF2 gene products have been hypothesized as potential candidates with immunoregulatory properties. A pony infection study was performed to define immune responses to EHV-1, and to determine if an EHV-1 ORF1/2 deletion mutant (ΔORF1/2) would have different disease and immunoregulatory effects compared to wild type EHV-1 (WT). Infection with either virus led to cytokine responses that coincided with the course of clinical disease, particularly the biphasic pyrexia, which correlates with respiratory disease and viremia, respectively. Similarly, both viruses caused suppression of proliferative T-cell responses on day 7 post infection (pi). The ΔORF1/ORF2 virus caused significantly shorter primary pyrexia and significantly reduced nasal shedding, and an attenuated decrease in PBMC IL-8 as well as increased Tbet responses compared to WT-infected ponies. In conclusion, our findings are (i) that infection of ponies with EHV-1 leads to modulation of immune responses, which are correlated with disease pathogenesis, and (ii) that the ORF1/2 genes are of importance for disease outcome and modulation of cytokine responses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1297-9716-42-23DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3045331PMC
February 2011

Immunological characterization of the equine airway epithelium and of a primary equine airway epithelial cell culture model.

Vet Immunol Immunopathol 2011 Apr 11;140(3-4):226-36. Epub 2011 Jan 11.

Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523-1678, USA.

Our understanding of innate immunity within the equine respiratory tract is limited despite growing evidence for its key role in both the immediate defense and the shaping of downstream adaptive immune responses to respiratory disease. As the first interface to undergo pathogen invasion, the respiratory epithelium is a key player in these early events and our goal was to examine the innate immune characteristics of equine respiratory epithelia and compare them to an in vitro equine respiratory epithelial cell model cultured at the air-fluid interface (AFI). Respiratory epithelial tissues, isolated epithelial cells, and four-week old cultured differentiated airway epithelial cells collected from five locations of the equine respiratory tract were examined for the expression of toll-like receptors (TLRs) and host defense peptides (HDPs) using conventional polymerase chain reaction (PCR). Cultured, differentiated, respiratory epithelial cells and freshly isolated respiratory epithelial cells were also examined for the expression of TLR3, TLR9 and major histocompatibility complex (MHC) class I and class II using fluorescence-activated cell sorting (FACS) analysis. In addition, cytokine and chemokine profiles from respiratory epithelial tissues, freshly isolated respiratory epithelial cells, and cultured, differentiated, epithelial cells from the upper respiratory tract were examined using real-time PCR. We found that respiratory epithelial tissues and isolated epithelial cells expressed TLRs 1-4 and 6-10 as well as HDPs, MxA, 2'5' OAS, β-defensin-1, and lactoferrin. In contrast, epithelial cells cultured at the AFI expressed TLRs 1-4 and 6 and 7 as well as MxA, 2'5' OAS, β-defensin-1, but had lost expression of TLRs 8-10 and lactoferrin. In addition, MHC-I and MHC-II surface expression decreased in epithelial cells cultured at the AFI compared to isolated epithelial cells whereas TLR3 and TLR9 were expressed at similar levels. Lastly, we found that equine respiratory epithelial cells express an array of pro-inflammatory, antiviral and regulatory cytokines and that after four weeks of in vitro growth conditions, equine respiratory epithelial cells cultured at the AFI retained expression of GM-CSF, IL-10, IL-8, TGF-β, TNF-α, and IL-6. In summary, we describe the development of an in vitro equine respiratory epithelial cell culture model that is morphologically similar to the equine airway epithelium and retains several key immunological properties. In the future this model will be a used to study equine respiratory viral pathogenesis and cell-to-cell interactions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetimm.2010.12.008DOI Listing
April 2011