Publications by authors named "Girma Ayana"

3 Publications

  • Page 1 of 1

Genome-wide association analysis permits characterization of Stagonospora nodorum blotch (SNB) resistance in hard winter wheat.

Sci Rep 2021 Jun 15;11(1):12570. Epub 2021 Jun 15.

Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA.

Stagonospora nodorum blotch (SNB) is an economically important wheat disease caused by the necrotrophic fungus Parastagonospora nodorum. SNB resistance in wheat is controlled by several quantitative trait loci (QTLs). Thus, identifying novel resistance/susceptibility QTLs is crucial for continuous improvement of the SNB resistance. Here, the hard winter wheat association mapping panel (HWWAMP) comprising accessions from breeding programs in the Great Plains region of the US, was evaluated for SNB resistance and necrotrophic effectors (NEs) sensitivity at the seedling stage. A genome-wide association study (GWAS) was performed to identify single-nucleotide polymorphism (SNP) markers associated with SNB resistance and effectors sensitivity. We found seven significant associations for SNB resistance/susceptibility distributed over chromosomes 1B, 2AL, 2DS, 4AL, 5BL, 6BS, and 7AL. Two new QTLs for SNB resistance/susceptibility at the seedling stage were identified on chromosomes 6BS and 7AL, whereas five QTLs previously reported in diverse germplasms were validated. Allele stacking analysis at seven QTLs explained the additive and complex nature of SNB resistance. We identified accessions ('Pioneer-2180' and 'Shocker') with favorable alleles at five of the seven identified loci, exhibiting a high level of resistance against SNB. Further, GWAS for sensitivity to NEs uncovered significant associations for SnToxA and SnTox3, co-locating with previously identified host sensitivity genes (Tsn1 and Snn3). Candidate region analysis for SNB resistance revealed 35 genes of putative interest with plant defense response-related functions. The QTLs identified and validated in this study could be easily employed in breeding programs using the associated markers to enhance the SNB resistance in hard winter wheat.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-021-91515-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206080PMC
June 2021

Assessing the genetic diversity and characterizing genomic regions conferring Tan Spot resistance in cultivated rye.

PLoS One 2019 28;14(3):e0214519. Epub 2019 Mar 28.

Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States of America.

Rye (Secale cereale L.) is known for its wide adaptation due to its ability to tolerate harsh environments in semiarid areas. To assess the diversity in rye we genotyped a panel of 178 geographically diverse accessions of four Secale sp. from U.S. National Small Grains Collection using 4,037 high-quality SNPs (single nucleotide polymorphisms) developed by genotyping-by-sequencing (GBS). PCA and STRUCTURE analysis revealed three major clusters that separate S. cereale L. from S. strictum and S. sylvestre, however, genetic clusters did not correlate with geographic origins and growth habit (spring/winter). The panel was evaluated for response to Pyrenophora tritici-repentis race 5 (PTR race 5) and nearly 59% accessions showed resistance or moderate resistance. Genome-wide association study (GWAS) was performed on S. cereale subsp. cereale using the 4,037 high-quality SNPs. Two QTLs (QTs.sdsu-5R and QTs.sdsu-2R) on chromosomes 5R and 2R were identified conferring resistance to PTR race 5 (p < 0.001) that explained 13.1% and 11.6% of the phenotypic variation, respectively. Comparative analysis showed a high degree of synteny between rye and wheat with known rearrangements as expected. QTs.sdsu-2R was mapped in the genomic region corresponding to wheat chromosome group 2 and QTs.sdsu-5R was mapped to a small terminal region on chromosome 4BL. Based on the genetic diversity, a set of 32 accessions was identified to represents more than 99% of the allelic diversity with polymorphic information content (PIC) of 0.25. This set can be utilized for genetic characterization of useful traits and genetic improvement of rye, triticale, and wheat.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0214519PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438500PMC
December 2019

Genome-Wide Association Study for Spot Blotch Resistance in Hard Winter Wheat.

Front Plant Sci 2018 6;9:926. Epub 2018 Jul 6.

Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States.

Spot blotch (SB) caused by (anamorph: ) is an economically important disease of wheat worldwide. Under a severe epidemic condition, the disease can cause yield losses up to 70%. Previous approaches like bi-parental mapping for identifying SB resistant genes/QTLs exploited only a limited portion of the available genetic diversity with a lower capacity to detect polygenic traits, and had a lower marker density. In this study, we performed genome-wide association study (GWAS) for SB resistance in hard winter wheat association mapping panel (HWWAMP) of 294 genotypes. The HWWAMP was evaluated for response to (isolate SD40), and a range of reactions was observed with 10 resistant, 38 moderately resistant, 120 moderately resistant- moderately susceptible, 111 moderately susceptible, and 15 susceptible genotypes. GWAS using 15,590 high-quality SNPs and 294 genotypes we identified six QTLs ( = <0.001) on chromosomes 2D, 3A, 4A, 4B, 5A, and 7B that collectively explained 30% of the total variation for SB resistance. Highly associated SNPs were identified for all six QTLs, (SNP: Kukri_c31121_1460, = 4%), (SNP: Excalibur_c46082_440, = 4%), 1 (SNP: IWA8475, = 5.5%), (SNP: Excalibur_rep_c79414_306, = 4%), (SNP: Kukri_rep_c104877_2166, = 6%), and (SNP: TA005844-0160, = 6%). Our study not only validates three (2D, 5A, and 7B) genomic regions identified in previous studies but also provides highly associated SNP markers for marker assisted selection. In addition, we identified three novel QTLs (, 1, and ) for SB resistance in wheat. Gene annotation analysis of the candidate regions identified nine NBS-LRR and 38 other plant defense-related protein families across multiple QTLs, and these could be used for fine mapping and further characterization of SB resistance in wheat. Comparative analysis with barley indicated the SB resistance locus on wheat chromosomes 2D, 3A, 5A, and 7B identified in our study are syntenic to the previously identified SB resistance locus on chromosomes 2H, 3H, 5H, and 7H in barley. The 10 highly resistant genotypes and SNP markers identified in our study could be very useful resources for breeding of SB resistance in wheat.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fpls.2018.00926DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6043670PMC
July 2018
-->