Publications by authors named "Geuntae Kim"

1 Publications

  • Page 1 of 1

Discovery of N-amido-phenylsulfonamide derivatives as novel microsomal prostaglandin E synthase-1 (mPGES-1) inhibitors.

Bioorg Med Chem Lett 2021 06 26;41:127992. Epub 2021 Mar 26.

Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea. Electronic address:

Our previous research showed that N-carboxy-phenylsulfonyl hydrazide (scaffold A) could reduce LPS-stimulated PGE levels in RAW 264.7 macrophage cells by an inhibition of mPGES-1 enzyme. However, a number of scaffold A derivatives showed the drawbacks such as the formation of regioisomers and poor liver metabolic stability. In order to overcome these synthetic and metabolic problems, therefore, we decided to replace N-carboxy-phenylsulfonyl hydrazide (scaffold A) with N-carboxy-phenylsulfonamide (scaffold B) or N-amido-phenylsulfonamide frameworks (scaffold C) as a bioisosteric replacement. Among them, MPO-0186 (scaffold C) inhibited the production of PGE (IC: 0.24 μM) in A549 cells via inhibition of mPGES-1 (IC: 0.49 μM in a cell-free assay) and was found to be approximately 9- and 8-fold more potent than MK-886 as a reference inhibitor, respectively. A molecular docking study theoretically suggests that MPO-0186 could inhibit PGE production by blocking the PGH binding site of mPGES-1 enzyme. Furthermore, MPO-0186 demonstrated good liver metabolic stability and no significant inhibition observed in clinically relevant CYP isoforms except CYP2C19. This result provides a potential starting point for the development of selective and potent mPGES-1 inhibitor with a novel scaffold.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
June 2021