Publications by authors named "Gemma Gou"

8 Publications

  • Page 1 of 1

SynGAP splice variants display heterogeneous spatio-temporal expression and subcellular distribution in the developing mammalian brain.

J Neurochem 2020 09 10;154(6):618-634. Epub 2020 Mar 10.

Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.

The SynGAP protein is a major regulator of synapse biology and neural circuit function. Genetic variants linked to epilepsy and intellectual disability disrupt synaptic function and neural excitability. SynGAP has been involved in multiple signaling pathways and can regulate small GTPases with very different roles. Yet, the molecular bases behind this pleiotropy are poorly understood. We hypothesize that different SynGAP isoforms will mediate different sets of functions and that deciphering their spatio-temporal expression and subcellular localization will accelerate understanding their multiple functions. Using isoform-specific antibodies recognizing SynGAP in mouse and human samples we found distinctive developmental expression patterns for all SynGAP isoforms in five mouse brain areas. Particularly noticeable was the delayed expression of SynGAP-α1 isoforms, which directly bind to postsynaptic density-95, in cortex and hippocampus during the first 2 weeks of postnatal development. Suggesting that during this period other isoforms would have a more prominent role. Furthermore, we observed subcellular localization differences between isoforms, particularly throughout postnatal development. Consistent with previous reports, SynGAP was enriched in the postsynaptic density in the mature forebrain. However, SynGAP was predominantly found in non-synaptic locations in a period of early postnatal development highly sensitive to SynGAP levels. While, α1 isoforms were always found enriched in the postsynaptic density, α2 isoforms changed from a non-synaptic to a mostly postsynaptic density localization with age and β isoforms were always found enriched in non-synaptic locations. The differential expression and subcellular distribution of SynGAP isoforms may contribute to isoform-specific regulation of small GTPases, explaining SynGAP pleiotropy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.14988DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7754318PMC
September 2020

Design, optimization and validation of genes commonly used in expression studies on DMH/AOM rat colon carcinogenesis model.

PeerJ 2019 29;7:e6372. Epub 2019 Jan 29.

Instituto de Ciencias de la Vid y del Vino (ICVV) (CSIC Universidad de la Rioja-Gobierno de La Rioja), Logroño, Spain.

Colorectal cancer (CRC), also known as colon cancer, is the third most common form of cancer worldwide in men and the second in women and is characterized by several genetic alterations, among them the expression of several genes. 1,2-dimethylhydrazine (DMH) and its metabolite azoxymethane (AOM) are procarcinogens commonly used to induce colon cancer in rats (DMH/AOM rat model). This rat model has been used to study changes in mRNA expression in genes involved in this pathological condition. However, a lack of proper detailed PCR primer design in the literature limits the reproducibility of the published data. The present study aims to design, optimize and validate the qPCR, in accordance with the MIQE (Minimum Information for Publication of Quantitative Real-Time PCR Experiments) guidelines, for seventeen genes commonly used in the DMH/AOM rat model of CRC ( and ) and two reference genes ( or - and ). The specificity of all primer pairs was empirically validated on agarose gel, and furthermore, the melting curve inspection was checked as was their efficiency (%) ranging from 90 to 110 with a correlation coefficient of  > 0.980. Finally, a pilot study was performed to compare the robustness of two candidate reference genes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7717/peerj.6372DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357868PMC
January 2019

Metazoan evolution of glutamate receptors reveals unreported phylogenetic groups and divergent lineage-specific events.

Elife 2018 11 22;7. Epub 2018 Nov 22.

Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain.

Glutamate receptors are divided in two unrelated families: ionotropic (iGluR), driving synaptic transmission, and metabotropic (mGluR), which modulate synaptic strength. The present classification of GluRs is based on vertebrate proteins and has remained unchanged for over two decades. Here we report an exhaustive phylogenetic study of GluRs in metazoans. Importantly, we demonstrate that GluRs have followed different evolutionary histories in separated animal lineages. Our analysis reveals that the present organization of iGluRs into six classes does not capture the full complexity of their evolution. Instead, we propose an organization into four subfamilies and ten classes, four of which have never been previously described. Furthermore, we report a sister class to mGluR classes I-III, class IV. We show that many unreported proteins are expressed in the nervous system, and that new Epsilon receptors form functional ligand-gated ion channels. We propose an updated classification of glutamate receptors that includes our findings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7554/eLife.35774DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6307864PMC
November 2018

Chronic treatment with a MEK inhibitor reverses enhanced excitatory field potentials in Syngap1 mice.

Pharmacol Rep 2018 Aug 23;70(4):777-783. Epub 2018 Jun 23.

Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK.

Background: Synaptic Ras-GTPase-activating protein 1 (SYNGAP1) is an abundant brain-specific protein localized at the postsynaptic density of mammalian excitatory synapses. SYNGAP1 functions as a crucial regulator of downstream intracellular signaling triggered by N-methyl-d-aspartate receptor activation. One of the most important signaling pathways regulated by SYNGAP1 is the Ras-Raf-MEK-ERK pathway. SYNGAP1 deficiency is associated with hyperphosphorylation of MEK and ERK kinases and with altered synaptic function in Syngap1 mice. Loss-of-function mutations in the SYNGAP1 gene have been documented in many human cognitive and neurological disorders. However, there are currently no approaches that reverse the phenotypes of SYNGAP1 deficiency.

Methods: Using electrophysiological recordings of field responses in hippocampal slices, we examined if disturbances of synaptic physiology in the hippocampus of 7-8-month old Syngap1 mice were sensitive to the effect of the MEK inhibitor PD-0325901 given orally for 6days.

Results: We found that in hippocampal slices from vehicle-treated Syngap1 mice, basal synaptic responses were higher and their long-term potentiation (LTP) was lower than in slices from wild-type littermates. Chronic administration of PD-0325901 normalized basal synaptic responses, but did not reverse LTP deficit.

Conclusions: The differential sensitivity of basal synaptic transmission and LTP to MEK inhibition indicates that the effects of SYNGAP1 deficiency on these synaptic parameters are mediated by distinct pathways. Our findings also suggest that at least some physiological phenotypes of the germline Syngap1 mutation can be ameliorated by pharmacological treatment of adult animals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pharep.2018.02.021DOI Listing
August 2018

Evolution of complexity in the zebrafish synapse proteome.

Nat Commun 2017 03 2;8:14613. Epub 2017 Mar 2.

Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh EH16 4SB, UK.

The proteome of human brain synapses is highly complex and is mutated in over 130 diseases. This complexity arose from two whole-genome duplications early in the vertebrate lineage. Zebrafish are used in modelling human diseases; however, its synapse proteome is uncharacterized, and whether the teleost-specific genome duplication (TSGD) influenced complexity is unknown. We report the characterization of the proteomes and ultrastructure of central synapses in zebrafish and analyse the importance of the TSGD. While the TSGD increases overall synapse proteome complexity, the postsynaptic density (PSD) proteome of zebrafish has lower complexity than mammals. A highly conserved set of ∼1,000 proteins is shared across vertebrates. PSD ultrastructural features are also conserved. Lineage-specific proteome differences indicate that vertebrate species evolved distinct synapse types and functions. The data sets are a resource for a wide range of studies and have important implications for the use of zebrafish in modelling human synaptic diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms14613DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5337974PMC
March 2017

Human post-mortem synapse proteome integrity screening for proteomic studies of postsynaptic complexes.

Mol Brain 2014 Nov 28;7:88. Epub 2014 Nov 28.

Background: Synapses are fundamental components of brain circuits and are disrupted in over 100 neurological and psychiatric diseases. The synapse proteome is physically organized into multiprotein complexes and polygenic mutations converge on postsynaptic complexes in schizophrenia, autism and intellectual disability. Directly characterising human synapses and their multiprotein complexes from post-mortem tissue is essential to understanding disease mechanisms. However, multiprotein complexes have not been directly isolated from human synapses and the feasibility of their isolation from post-mortem tissue is unknown.

Results: Here we establish a screening assay and criteria to identify post-mortem brain samples containing well-preserved synapse proteomes, revealing that neocortex samples are best preserved. We also develop a rapid method for the isolation of synapse proteomes from human brain, allowing large numbers of post-mortem samples to be processed in a short time frame. We perform the first purification and proteomic mass spectrometry analysis of MAGUK Associated Signalling Complexes (MASC) from neurosurgical and post-mortem tissue and find genetic evidence for their involvement in over seventy human brain diseases.

Conclusions: We have demonstrated that synaptic proteome integrity can be rapidly assessed from human post-mortem brain samples prior to its analysis with sophisticated proteomic methods. We have also shown that proteomics of synapse multiprotein complexes from well preserved post-mortem tissue is possible, obtaining structures highly similar to those isolated from biopsy tissue. Finally we have shown that MASC from human synapses are involved with over seventy brain disorders. These findings should have wide application in understanding the synaptic basis of psychiatric and other mental disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13041-014-0088-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4271336PMC
November 2014

The role of gaseous neurotransmitters in the antinociceptive effects of morphine during acute thermal pain.

Eur J Pharmacol 2014 Aug 15;737:41-6. Epub 2014 May 15.

Grup de Neurofarmacologia Molecular, Institut d׳Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Facultat de Medicina. Edifici M2-115, Barcelona 08193, Spain. Electronic address:

Treatment with a carbon monoxide-releasing molecule (tricarbonyldichlororuthenium(II) dimer, CORM-2) or a classical inducible heme oxygenase (HO-1) inducer (cobalt protoporphyrin IX, CoPP) enhanced the antinociceptive effects of morphine during chronic pain but the role played by these compounds in acute thermal nociception was not evaluated. The effects of CORM-2 and CoPP treatments on the local antinociceptive actions of morphine and their interactions with nitric oxide during acute pain were evaluated by using wild type (WT), neuronal (nNOS-KO) or inducible (iNOS-KO) nitric oxide synthase knockout mice and assessing their thermal nociception to a hot stimulus with the hot plate test. Our results showed that the absence of nNOS or iNOS genes did not alter licking and jumping responses nor the antinociceptive effects produced by morphine indicating that the local thermal inhibitory effects produced by this drug in the absence of inflammation or injury are not mediated by the nitric oxide pathway triggered by nNOS or iNOS enzymes. Moreover, while the systemic administration of CORM-2 or CoPP inhibited licking and jumping latencies in all genotypes, these treatments only enhanced the local inhibition of jumping latencies produced by morphine in WT and nNOS-KO mice which effects were reversed by the peripheral administration of an HO-1 inhibitor. These data indicate that the co-administration of morphine with CORM-2 or CoPP produced remarkable local antinociceptive effects in WT and nNOS-KO mice and reveal that a significant interaction between carbon monoxide and nitric oxide systems occurs on the local antinociceptive effects produced by morphine during acute thermal nociception.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2014.05.004DOI Listing
August 2014

Effects of treatment with a carbon monoxide-releasing molecule and a heme oxygenase 1 inducer in the antinociceptive effects of morphine in different models of acute and chronic pain in mice.

Psychopharmacology (Berl) 2013 Aug 13;228(3):463-77. Epub 2013 Mar 13.

Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.

Rationale: Treatment with a carbon monoxide-releasing molecule (tricarbonyldichlororuthenium(II) dimer, CORM-2) or a classical heme oxygenase 1 inducer (cobalt protoporphyrin IX, CoPP) has potent anti-inflammatory effects, but the role played by these treatments in the antinociceptive effects of morphine during acute and chronic pain was not evaluated.

Objectives: In wild type (WT), neuronal (NOS1-KO), or inducible (NOS2-KO) nitric oxide synthases knockout mice, we evaluated the effects of CORM-2 and CoPP treatments in the antinociceptive actions of morphine and their interaction with nitric oxide during acute, visceral, and chronic inflammatory or neuropathic pain.

Methods: Acute and visceral pain was assessed through formalin and acid acetic writhing tests. Chronic inflammatory pain induced by the intra-articular administration of complete Freund's adjuvant and neuropathic pain by partial ligation of sciatic nerve were evaluated by measuring allodynia and hyperalgesia using the von Frey filaments, plantar, or cold plate tests.

Results: While nitric oxide, synthetized by NOS1 and/or NOS2, increased the local antinociceptive effects of morphine during acute and chronic pain, it decreased the inhibitory effects of morphine after visceral pain. Moreover, while CORM-2 or CoPP treatments did not alter or reduced the antinociceptive effects of morphine during acute and visceral pain, both treatments improved the local antiallodynic and antihyperalgesic effects of morphine after chronic inflammatory or neuropathic pain in WT, but not in KO mice.

Conclusions: CORM-2 and CoPP treatments improved the local antinociceptive effects of morphine during chronic inflammatory and neuropathic pain by interaction with nitric oxide synthetized by NOS1 and NOS2 isoforms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00213-013-3053-5DOI Listing
August 2013