Publications by authors named "Gauthier Monnet"

2 Publications

  • Page 1 of 1

Behavioural variation between piscivore and insectivore rainbow trout Oncorhynchus mykiss.

J Fish Biol 2021 May 10. Epub 2021 May 10.

Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada.

A proactive-reactive continuum integrating multiple (i.e., 3+) dimensions of animal behaviour has been reported as a major axis of behavioural differentiation, but its stability along a biological hierarchy from individuals to populations remains speculative. Piscivore and insectivore rainbow trout (Oncorhynchus mykiss) represent closely related ecotypes with strong ecological divergence driven by selection for a large-bodied piscivorous lifestyle with fast juvenile growth vs. selection for smaller adult body size and lower growth associated with an insectivorous diet. To evaluate whether differences in behaviour between ecotypes are consistent with a proactive-reactive axis and consistent along a biological hierarchy, the authors examined variation in emergence time from a shelter, exploration, activity and predator inspection among individuals, populations and ecotypes of juvenile piscivore and insectivore rainbow trout O. mykiss. As expected, the faster-growing piscivore ecotype was more proactive (i.e., shorter emergence time, exploration and predator inspection) than the more reactive insectivore ecotype. This behavioural contrast was partly maintained across populations, although activity differences were most pronounced among populations, rather than emergence time. Insectivore fry showed substantial variation in behavioural expression among individuals within populations; by contrast, piscivores showed highly similar proactive behaviours with significantly lower inter-individual variation in behavioural expression, suggesting intense selection on behaviour supporting their faster growth. This work suggests that piscivore and insectivore O. mykiss broadly differ in behaviour along a proactive vs. reactive continuum, and highlights the greater multidimensionality of behavioural expression within the insectivore ecotype. Contrasting behaviours between ecotypes may result from differential selection for slow vs. fast juvenile growth and associated metabolism, and may contribute to adult trophic specialization.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfb.14781DOI Listing
May 2021

Adaptive differentiation of growth, energetics and behaviour between piscivore and insectivore juvenile rainbow trout along the Pace-of-Life continuum.

J Anim Ecol 2020 11 12;89(11):2717-2732. Epub 2020 Oct 12.

Department of Zoology, The University of British Columbia, Vancouver, BC, Canada.

Adaptive trade-offs are fundamental mechanisms underlying phenotypic diversity, but the presence of generalizable patterns in multivariate adaptation and their mapping onto environmental gradients remain unclear. To understand how life history affects multivariate trait associations, we examined relationships among growth, metabolism, anatomy and behaviour in rainbow trout juveniles from piscivore versus insectivore ecotypes along an experimental gradient of food availability. We hypothesized that (a) selection for larger size in piscivorous adults would select for higher juvenile growth at the cost of lower active metabolism; (b) elevated growth of piscivores would be supported by a greater productivity of their natal stream and more proactive foraging behaviours and (c) general patterns of multivariate trait associations would match the predictions of the Pace-Of-Life Syndrome. Relative to insectivores, piscivorous fry showed a pattern of higher growth (+63%), maximum food intake (+33%), growth efficiency (+41%) and standard metabolic rate (SMR; +47%), but lower active metabolic capacity (maximum metabolic rate [MMR; -17%], aerobic scope [AS; -48%]), suggesting that faster piscivore growth is supported by greater food intake and digestive capacity but is traded-off against lower scope for active metabolism. A similar trade-off appeared among organ systems, with piscivorous fry exhibiting an 83% greater investment in average mass of organs associated with food consumption and processing (i.e. stomach and intestine), but an apparently smaller relative investment in organs involved in cardiovascular or cognitive activities (heart and brain, respectively). Higher invertebrate drift in their natal rearing habitat, quicker behavioural transition to a novel food source and lower anxiety after a frightening event in piscivorous fry suggest that faster growth requires both proactive foraging behaviours and higher prey availability in the environment. Finally, the sampling of replicate insectivore populations confirmed their lower juvenile growth (-73% on average) and reduced environmental productivity of their natal streams (-45% lower drift abundance) relative to the piscivore ecotype. Our results suggest that selection for large adult body size influences selection on high juvenile growth, high basal metabolism and proactive behaviours, and that the intense phenotypic divergence between piscivorous and insectivorous rainbow trout may be constrained by environmental productivity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/1365-2656.13326DOI Listing
November 2020