Publications by authors named "Gaurav Bedse"

26 Publications

  • Page 1 of 1

Targeting diacylglycerol lipase reduces alcohol consumption in preclinical models.

J Clin Invest 2021 Jul 22. Epub 2021 Jul 22.

Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, United States of America.

Alcohol use disorder (AUD) is associated with substantial morbidity, mortality, and societal cost, and pharmacological treatment options for AUD are limited. The endogenous cannabinoid (eCB) signaling system is critically involved in reward processing and alcohol intake is positively correlated with release of the eCB ligand 2-Arachidonoylglycerol (2-AG) within reward neurocircuitry. Here we show that genetic and pharmacological inhibition of diacylglycerol lipase (DAGL), the rate limiting enzyme in the synthesis of 2-AG, reduces alcohol consumption in a variety of preclinical models ranging from a voluntary free-access model to aversion resistant-drinking and dependence-like drinking induced via chronic intermittent ethanol vapor exposure in mice. DAGL inhibition during either chronic alcohol consumption or protracted withdrawal was devoid of anxiogenic and depressive-like behavioral effects. Lastly, DAGL inhibition also prevented ethanol-induced suppression of GABAergic transmission onto midbrain dopamine neurons, providing mechanistic insight into how DAGL inhibition could affect alcohol reward. These data suggest reducing 2-AG signaling via inhibition of DAGL could represent an effective approach to reduce alcohol consumption across the spectrum of AUD severity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI146861DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8409586PMC
July 2021

2-Arachidonoylglycerol Modulation of Anxiety and Stress Adaptation: From Grass Roots to Novel Therapeutics.

Biol Psychiatry 2020 10 17;88(7):520-530. Epub 2020 Mar 17.

Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Vanderbilt Center for Addiction Research, Vanderbilt University Medical Center, Nashville, Tennessee. Electronic address:

Over the past decade there has been a surge of interest in the development of endocannabinoid-based therapeutic approaches for the treatment of diverse neuropsychiatric conditions. Although initial preclinical and clinical development efforts focused on pharmacological inhibition of fatty acid amide hydrolase to elevate levels of the endocannabinoid anandamide, more recent efforts have focused on inhibition of monoacylglycerol lipase (MAGL) to enhance signaling of the most abundant and efficacious endocannabinoid ligand, 2-arachidonoylglycerol (2-AG). We review the biochemistry and physiology of 2-AG signaling and preclinical evidence supporting a role for this system in the regulation of anxiety-related outcomes and stress adaptation. We review preclinical evidence supporting MAGL inhibition for the treatment of affective, trauma-related, and stress-related disorders; describe the current state of MAGL inhibitor drug development; and discuss biological factors that could affect MAGL inhibitor efficacy. Issues related to the clinical advancement of MAGL inhibitors are also discussed. We are cautiously optimistic, as the field of MAGL inhibitor development transitions from preclinical to clinical and theoretical to practical, that pharmacological 2-AG augmentation could represent a mechanistically novel therapeutic approach for the treatment of affective and stress-related neuropsychiatric disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopsych.2020.01.015DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486996PMC
October 2020

Endocannabinoid Signaling Collapse Mediates Stress-Induced Amygdalo-Cortical Strengthening.

Neuron 2020 03 13;105(6):1062-1076.e6. Epub 2020 Jan 13.

Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA; Departments of Pharmacology and Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Nashville, TN 37232, USA. Electronic address:

Functional coupling between the amygdala and the dorsomedial prefrontal cortex (dmPFC) has been implicated in the generation of negative affective states; however, the mechanisms by which stress increases amygdala-dmPFC synaptic strength and generates anxiety-like behaviors are not well understood. Here, we show that the mouse basolateral amygdala (BLA)-prelimbic prefrontal cortex (plPFC) circuit is engaged by stress and activation of this pathway in anxiogenic. Furthermore, we demonstrate that acute stress exposure leads to a lasting increase in synaptic strength within a reciprocal BLA-plPFC-BLA subcircuit. Importantly, we identify 2-arachidonoylglycerol (2-AG)-mediated endocannabinoid signaling as a key mechanism limiting glutamate release at BLA-plPFC synapses and the functional collapse of multimodal 2-AG signaling as a molecular mechanism leading to persistent circuit-specific synaptic strengthening and anxiety-like behaviors after stress exposure. These data suggest that circuit-specific impairment in 2-AG signaling could facilitate functional coupling between the BLA and plPFC and the translation of environmental stress to affective pathology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2019.12.024DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992313PMC
March 2020

Cyclooxygenase-2 inhibition reduces anxiety-like behavior and normalizes enhanced amygdala glutamatergic transmission following chronic oral corticosterone treatment.

Neurobiol Stress 2019 Nov 10;11:100190. Epub 2019 Aug 10.

Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.

Chronic stress increases the probability of receiving an anxiety, depression, or chronic illness diagnosis. Pharmacological interventions that reduce the behavioral and physiological effects of chronic stress in animal models may represent novel approaches for the treatment of stress-related psychiatric disorders. Here, we examined the effects of cyclooxygenase-2 (COX-2) inhibition on anxiety-like behaviors and amygdala glutamatergic signaling after chronic non-invasive oral corticosterone (CORT) administration in mice. Treatment with the highly selective COX-2 inhibitor Lumiracoxib (LMX) reversed anxiety-like behavior induced by chronic CORT. Specifically, acute and repeated administration of LMX 5 mg kg reduced chronic CORT-induced anxiety-like behavior measured using the elevated-plus maze, elevated-zero maze, and light-dark box tests. In contrast, LMX did not affect anxiety-like behaviors in naïve mice. electrophysiology studies revealed that repeated LMX treatment normalized chronic CORT-induced increases in spontaneous excitatory glutamatergic currents recorded from anterior, but not posterior, basolateral amygdala neurons. These data indicate COX-2 inhibition can reverse chronic CORT-induced increases in anxiety-like behaviors and amygdala glutamatergic signaling, and support further clinical investigation of selective COX-2 inhibitors for the treatment of affective and stress-related psychiatric disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ynstr.2019.100190DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710559PMC
November 2019

Driving the Downward Spiral: Alcohol-Induced Dysregulation of Extended Amygdala Circuits and Negative Affect.

Alcohol Clin Exp Res 2019 10 30;43(10):2000-2013. Epub 2019 Aug 30.

Vanderbilt Center for Addiction Research, Nashville, Tennessee.

Alcohol use disorder (AUD) afflicts a large number of individuals, families, and communities globally. Affective disturbances, including stress, depression, and anxiety, are highly comorbid with AUD, contributing in some cases to initial alcohol use and continued use. Negative affect has a particularly strong influence on the withdrawal/abstinence stage of addiction as individuals with AUD frequently report stressful events, depression, and anxiety as key factors for relapse. Treatment options for negative affect associated with AUD are limited and often ineffective, highlighting the pressing need for preclinical studies examining the underlying neural circuitry driving AUD-associated negative affect. The extended amygdala (EA) is a set of brain areas collectively involved in generating and regulating affect, and extensive research has defined a critical role for the EA in all facets of substance use disorder. Here, we review the expansive historical literature examining the effects of ethanol exposure on the EA, with an emphasis on the complex EA neural circuitry driving negative affect in all phases of the alcohol addiction cycle. Specifically, this review focuses on the effects of alcohol exposure on the neural circuitry in 2 key components of the EA, the central nucleus of the amygdala and the bed nucleus of the stria terminalis. Additionally, future directions are proposed to advance our understanding of the relationship between AUD-associated negative affect and neural circuitry in the EA, with the long-term goal of developing better diagnostic tools and new pharmacological targets aimed at treating negative affect in AUD. The concepts detailed here will serve as the foundation for a companion review focusing on the potential for the endogenous cannabinoid system in the EA as a novel target for treating the stress, anxiety, and negative emotional state driving AUD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/acer.14178DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779502PMC
October 2019

Endocannabinoid Signaling in the Central Amygdala and Bed Nucleus of the Stria Terminalis: Implications for the Pathophysiology and Treatment of Alcohol Use Disorder.

Alcohol Clin Exp Res 2019 10 21;43(10):2014-2027. Epub 2019 Aug 21.

Vanderbilt Center for Addiction Research, Nashville, Tennessee.

High rates of relapse are a chronic and debilitating obstacle to effective treatment of alcohol use disorder (AUD); however, no effective treatments are available to treat symptoms induced by protracted abstinence. In the first part of this 2-part review series, we examine the literature supporting the effects of alcohol exposure within the extended amygdala (EA) neural circuitry. In Part 2, we focus on a potential way to combat negative affect associated with AUD, by exploring the therapeutic potential of the endogenous cannabinoid (eCB) system. The eCB system is a potent modulator of neural activity in the brain, and its ability to mitigate stress and negative affect has long been an area of interest for developing novel therapeutics. This review details the recent advances in our understanding of eCB signaling in 2 key regions of the EA, the central nucleus of the amygdala and the bed nucleus of the stria terminalis (BNST), and their role in regulating negative affect. Despite an established role for EA eCB signaling in reducing negative affect, few studies have examined the potential for eCB-based therapies to treat AUD-associated negative affect. In this review, we present an overview of studies focusing on eCB signaling in EA and cannabinoid modulation on EA synaptic activity. We further discuss studies suggesting dysregulation of eCB signaling in models of AUD and propose that pharmacological augmentation of eCB could be a novel approach to treat aspects of AUD. Lastly, future directions are proposed to advance our understanding of the relationship between AUD-associated negative affect and the EA eCB system that could yield new pharmacotherapies targeting negative affective symptoms associated with AUD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/acer.14159DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779484PMC
October 2019

Endocannabinoid control of the insular-bed nucleus of the stria terminalis circuit regulates negative affective behavior associated with alcohol abstinence.

Neuropsychopharmacology 2019 02 2;44(3):526-537. Epub 2018 Nov 2.

Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA.

Negative affect is a core symptom domain associated with an array of neurological and psychiatric disorders and is only partially targeted by current therapies, highlighting the need for better, more targeted treatment options. This study focuses on negative affective symptoms associated with prolonged alcohol abstinence, one of the leading causes of relapse. Using a mouse model of chronic alcohol consumption followed by forced abstinence (CDFA), prolonged alcohol abstinence increased c-fos expression and spontaneous glutamatergic neurotransmission in the dorsal bed nucleus of the stria terminalis (dBNST), a region heavily implicated in negative affect in both humans and rodents. Further, pharmacologically enhancing endogenous cannabinoids (eCB) with JZL184 prevents abstinence-induced increases in dBNST neuronal activity, underscoring the therapeutic potential of drugs targeting the brain's eCB system. Next, we used a channelrhodopsin-assisted mapping strategy to identify excitatory inputs to the dBNST that could contribute to CDFA-induced negative affect. We identified the insular cortex (insula), a region involved in regulating interoception, as a dense, functional, eCB-sensitive input to the dBNST. Using a chemogenetic strategy to locally mimic eCB signaling, we demonstrate that the insula strongly influences the CDFA behavioral phenotype and dBNST neuronal activity. Lastly, we used an anterograde strategy for transynaptic targeting of Cre expression in combination with a G-DREADD to selectively recruit dBNST neurons receiving insula projections. Chemogenetic recruitment of these neurons mimicked behavioral and c-fos responses observed in CDFA. Collectively, this study supports a role for the insula-BNST neural circuit in negative affective disturbances and highlights the therapeutic potential of the eCB system for treating negative affective disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41386-018-0257-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333805PMC
February 2019

Therapeutic endocannabinoid augmentation for mood and anxiety disorders: comparative profiling of FAAH, MAGL and dual inhibitors.

Transl Psychiatry 2018 04 26;8(1):92. Epub 2018 Apr 26.

Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.

Recent studies have demonstrated anxiolytic potential of pharmacological endocannabinoid (eCB) augmentation approaches in a variety of preclinical models. Pharmacological inhibition of endocannabinoid-degrading enzymes, such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), elicit promising anxiolytic effects in rodent models with limited adverse behavioral effects, however, the efficacy of dual FAAH/MAGL inhibition has not been investigated. In the present study, we compared the effects of FAAH (PF-3845), MAGL (JZL184) and dual FAAH/MAGL (JZL195) inhibitors on (1) anxiety-like behaviors under non-stressed and stressed conditions, (2) locomotor activity and body temperature, (3) lipid levels in the brain and (4) cognitive functions. Behavioral analysis showed that PF-3845 or JZL184, but not JZL195, was able to prevent restraint stress-induced anxiety in the light-dark box assay when administered before stress exposure. Moreover, JZL195 treatment was not able to reverse foot shock-induced anxiety-like behavior in the elevated zero maze or light-dark box. JZL195, but not PF-3845 or JZL184, decreased body temperature and increased anxiety-like behavior in the open-field test. Overall, JZL195 did not show anxiolytic efficacy and the effects of JZL184 were more robust than that of PF-3845 in the models examined. These results showed that increasing either endogenous AEA or 2-AG separately produces anti-anxiety effects under stressful conditions but the same effects are not obtained from simultaneously increasing both AEA and 2-AG.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-018-0141-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5917016PMC
April 2018

The Selective Angiotensin II Type 2 Receptor Agonist, Compound 21, Attenuates the Progression of Lung Fibrosis and Pulmonary Hypertension in an Experimental Model of Bleomycin-Induced Lung Injury.

Front Physiol 2018 27;9:180. Epub 2018 Mar 27.

Department of Pharmacodynamics, University of Florida, Gainesville, FL, United States.

Idiopathic Pulmonary Fibrosis (IPF) is a chronic lung disease characterized by scar formation and respiratory insufficiency, which progressively leads to death. Pulmonary hypertension (PH) is a common complication of IPF that negatively impacts clinical outcomes, and has been classified as Group III PH. Despite scientific advances, the dismal prognosis of IPF and associated PH remains unchanged, necessitating the search for novel therapeutic strategies. Accumulating evidence suggests that stimulation of the angiotensin II type 2 (AT) receptor confers protection against a host of diseases. In this study, we investigated the therapeutic potential of Compound 21 (C21), a selective AT receptor agonist in the bleomycin model of lung injury. A single intra-tracheal administration of bleomycin (2.5 mg/kg) to 8-week old male Sprague Dawley rats resulted in lung fibrosis and PH. Two experimental protocols were followed: C21 was administered (0.03 mg/kg/day, ip) either immediately (prevention protocol, BCP) or after 3 days (treatment protocol, BCT) of bleomycin-instillation. Echocardiography, hemodynamic, and Fulton's index assessments were performed after 2 weeks of bleomycin-instillation. Lung tissue was processed for gene expression, hydroxyproline content (a marker of collagen deposition), and histological analysis. C21 treatment prevented as well as attenuated the progression of lung fibrosis, and accompanying PH. The beneficial effects of C21 were associated with decreased infiltration of macrophages in the lungs, reduced lung inflammation and diminished pulmonary collagen accumulation. Further, C21 treatment also improved pulmonary pressure, reduced muscularization of the pulmonary vessels and normalized cardiac function in both the experimental protocols. However, there were no major differences in any of the outcomes measured from the two experimental protocols. Collectively, our findings indicate that stimulation of the AT receptor by C21 attenuates bleomycin-induced lung injury and associated cardiopulmonary pathology, which needs to be further explored as a promising approach for the clinical treatment of IPF and Group III PH.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphys.2018.00180DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5881224PMC
March 2018

Oxazepam-Dopamine Conjugates Increase Dopamine Delivery into Striatum of Intact Rats.

Mol Pharm 2017 09 22;14(9):3178-3187. Epub 2017 Aug 22.

Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy.

The neurotransmitter dopamine (DA) was covalently linked to oxazepam (OXA), a well-known positive allosteric modulator of γ-aminobutyric acid type-A (GABA) receptor, through a carbamate linkage (4) or a succinic spacer (6). These conjugates were synthesized with the aim of improving the delivery of DA into the brain and enhancing GABAergic transmission, which may be useful for the long-term treatment of Parkinson disease (PD). Structure-based permeability properties, in vitro stability, and blood-brain barrier (BBB) permeability studies led to identify the OXA-DA carbamate conjugate 4a as the compound better combining sufficient stability and ability to cross BBB. Finally, in vivo microdialysis experiments in freely moving rats demonstrated that 4a (20 mg/kg, i.p.) significantly increases extracellular DA levels into striatum, with a peak (more than 15-fold increase over the baseline) at about 80 min after a single administration. The stability and delivery data proved that 4a may be a promising candidate for further pharmacological studies in animal models of PD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.7b00405DOI Listing
September 2017

Functional Redundancy Between Canonical Endocannabinoid Signaling Systems in the Modulation of Anxiety.

Biol Psychiatry 2017 Oct 15;82(7):488-499. Epub 2017 Mar 15.

Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee. Electronic address:

Background: Increasing the available repertoire of effective treatments for mood and anxiety disorders represents a critical unmet need. Pharmacological augmentation of endogenous cannabinoid (eCB) signaling has been suggested to represent a novel approach to the treatment of anxiety disorders; however, the functional interactions between two canonical eCB pathways mediated via anandamide (N-arachidonylethanolamine [AEA]) and 2-arachidonoylglycerol (2-AG) in the regulation of anxiety are not well understood.

Methods: We utilized pharmacological augmentation and depletion combined with behavioral and electrophysiological approaches to probe the role of 2-AG signaling in the modulation of stress-induced anxiety and the functional redundancy between AEA and 2-AG signaling in the modulation of anxiety-like behaviors in mice.

Results: Selective 2-AG augmentation reduced anxiety in the light/dark box assay and prevented stress-induced increases in anxiety associated with limbic AEA deficiency. In contrast, acute 2-AG depletion increased anxiety-like behaviors, which was normalized by selective pharmacological augmentation of AEA signaling and via direct cannabinoid receptor 1 stimulation with Δ-tetrahydrocannabinol. Electrophysiological studies revealed 2-AG modulation of amygdala glutamatergic transmission as a key synaptic correlate of the anxiolytic effects of 2-AG augmentation.

Conclusions: Although AEA and 2-AG likely subserve distinct physiological roles, a pharmacological and functional redundancy between these canonical eCB signaling pathways exists in the modulation of anxiety-like behaviors. These data support development of eCB-based treatment approaches for mood and anxiety disorders and suggest a potentially wider therapeutic overlap between AEA and 2-AG augmentation approaches than was previously appreciated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopsych.2017.03.002DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5585044PMC
October 2017

Design and synthesis of novel, potent and selective hypoxanthine analogs as adenosine A receptor antagonists and their biological evaluation.

Bioorg Med Chem 2017 03 16;25(6):1963-1975. Epub 2017 Feb 16.

Drug Discovery Unit, Advinus Therapeutics Ltd., Hinjewadi, Pune 411 057, India.

Multipronged approach was used to synthesize a library of diverse C-8 cyclopentyl hypoxanthine analogs from a common intermediate III. Several potent and selective compounds were identified and evaluated for pharmacokinetic (PK) properties in Wistar rats. One of the compounds 14 with acceptable PK parameters was selected for testing in in vivo primary acute diuresis model. The compound demonstrated significant diuretic activity in this model.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2017.02.029DOI Listing
March 2017

A adenosine receptor antagonists: Design, synthesis and biological evaluation of novel xanthine derivatives.

Eur J Med Chem 2017 Feb 8;127:986-996. Epub 2016 Nov 8.

Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India. Electronic address:

AdoR is a low affinity adenosine receptor that functions by Gs mediated elevation of cAMP and subsequent downstream signaling. The receptor has been implicated in lung inflammatory disorders like COPD and asthma. Several potent and selective AAdoR antagonists have been reported in literature, however most of the compounds suffer from poor pharmacokinetic profile. Therefore, with the aim to identify novel, potent and selective AAdoR antagonists with improved pharmacokinetic properties, we first explored more constrained form of MRS-1754 (4). To improve the metabolic stability, several linker modifications were attempted as replacement of amide linker along with different phenyl or other heteroaryls between C8 position of xanthine head group and terminal phenyl ring. SAR optimization resulted in identification of two novel AAdoR antagonists, 8-{1-[5-Oxo-1-(4-trifluoromethyl-phenyl)-pyrrolidin-3-ylmethyl]-1H-pyrazol-4-yl}-1,3-dipropyl-xanthine (31) and 8-(1-{2-Oxo-2-[4-(3-trifluoromethyl-phenyl)-piperazin-1-yl]-ethyl}-1H-pyrazol-4-yl)-1,3-dipropyl-xanthine (65), with high binding affinity (K = 1 and 1.5 nM, respectively) and selectivity for AAdoR with very good functional potency of 0.9 nM and 4 nM, respectively. Compound 31 and 65 also displayed good pharmacokinetic properties in mice with 27% and 65% oral bioavailability respectively. When evaluated in in vivo mice model of asthma, compound 65 also inhibited airway inflammation and airway reactivity in ovalbumin induced allergic asthma at 3 mpk dose.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2016.11.007DOI Listing
February 2017

Glutamate and Mitochondria: Two Prominent Players in the Oxidative Stress-Induced Neurodegeneration.

Curr Alzheimer Res 2016 ;13(2):185-97

Department of Clinical and Experimental Medicine, University of Foggia, Viale Luigi Pinto 1, Foggia 71100, Italy.

The aetiology of major neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) is still unknown, but increasing evidences suggest that glutamate and mitochondria are two prominent players in the oxidative stress (OS) process that underlie these illnesses. Although AD and PD have distinct pathological and clinical features, OS is a common mechanism contributing to neuronal damage. Glutamate is an important neurotransmitter in neurons and glial cells and is strongly dependent on calcium homeostasis and on mitochondrial function. In the present work we focused on glutamate- induced calcium signaling and its relation to the mitochondrial dysfunction with cell death processes. In addition, we have discussed how alterations in this pathway may lead or aggravate the neurodegenerative diseases. Finally, this review aims to stimulate further studies on this issue and thereby engage a new perspective regarding the design of possible therapeutic agents or the identification of biomarkers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1567205013666151218132725DOI Listing
October 2016

Aberrant insulin signaling in Alzheimer's disease: current knowledge.

Front Neurosci 2015 16;9:204. Epub 2015 Jun 16.

Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy.

Alzheimer's disease (AD) is the most common form of dementia affecting elderly people. AD is a multifaceted pathology characterized by accumulation of extracellular neuritic plaques, intracellular neurofibrillary tangles (NFTs) and neuronal loss mainly in the cortex and hippocampus. AD etiology appears to be linked to a multitude of mechanisms that have not been yet completely elucidated. For long time, it was considered that insulin signaling has only peripheral actions but now it is widely accepted that insulin has neuromodulatory actions in the brain. Insulin signaling is involved in numerous brain functions including cognition and memory that are impaired in AD. Recent studies suggest that AD may be linked to brain insulin resistance and patients with diabetes have an increased risk of developing AD compared to healthy individuals. Indeed insulin resistance, increased inflammation and impaired metabolism are key pathological features of both AD and diabetes. However, the precise mechanisms involved in the development of AD in patients with diabetes are not yet fully understood. In this review we will discuss the role played by aberrant brain insulin signaling in AD. In detail, we will focus on the role of insulin signaling in the deposition of neuritic plaques and intracellular NFTs. Considering that insulin mitigates beta-amyloid deposition and phosphorylation of tau, pharmacological strategies restoring brain insulin signaling, such as intranasal delivery of insulin, could have significant therapeutic potential in AD treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnins.2015.00204DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4468388PMC
July 2015

Depressive-like behavior is paired to monoaminergic alteration in a murine model of Alzheimer's disease.

Int J Neuropsychopharmacol 2014 Oct 31;18(4). Epub 2014 Oct 31.

Department of Physiology and Pharmacology, Sapienza University of Rome, Italy (Drs Romano, Tempesta, Lavecchia, Bedse, and Gaetani); Department of Clinical and Experimental Medicine, University of Foggia, Italy (Drs Pace, Macheda, and Cassano); Puglia and Basilicata Experimental Zooprophylactic Institute, Foggia, Italy (Dr Petrella); School of Pharmacy, Pharmacology Unit, University of Camerino, Italy (Dr Cifani); Department of Medical and Surgical Sciences, University of Foggia, Italy (Drs Serviddio and Vendemiale).

Background: Neuropsychiatric signs are critical in primary caregiving of Alzheimer patients and have not yet been fully investigated in murine models.

Methods: 18-month-old 3×Tg-AD male mice and their wild-type male littermates (non-Tg) were used. The open field test and the elevated plus maze test were used to evaluate anxiety-like behaviors, whereas the Porsolt forced swim test, the tail suspension test, and the sucrose preference test for antidepressant/depression-coping behaviors. Neurochemical study was conducted by microdialysis in freely-moving mice, analyzing the basal and K(+)-stimulated monoamine output in the frontal cortex and ventral hippocampus. Moreover by immunohistochemistry, we analysed the expression of Tyrosin hydroxylase and Tryptophan hydroxylase, which play a key role in the synthesis of monoamines.

Results: Aged 3×Tg-AD mice exhibited a higher duration of immobility in the forced swim and tail suspension tests (predictors of depression-like behavior) which was not attenuated by a noradrenaline reuptake inhibitor, desipramine. In the sucrose preference test, 3×Tg-AD mice showed a significantly lower sucrose preference compared to the non-Tg group, without any difference in total fluid intake. In contrast, the motor functions and anxiety-related emotional responses of 3×Tg-AD mice were normal, as detected by the open-field and elevated plus-maze tests. To strengthen these results, we then evaluated the monoaminergic neurotransmissions by in vivo microdialysis and immunohistochemistry. In particular, with the exception of the basal hippocampal dopamine levels, 3×Tg-AD mice exhibited a lower basal extracellular output of amines in the frontal cortex and ventral hippocampus and also a decreased extracellular response to K(+) stimulation. Such alterations occur with obvious local amyloid-β and tau pathologies and without gross alterations in the expression of Tyrosin and Tryptophan hydroxylase.

Conclusions: These results suggest that 3×Tg-AD mice exhibit changes in depression-related behavior involving aminergic neurotrasmitters and provide an animal model for investigating AD with depression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ijnp/pyu020DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4360228PMC
October 2014

Inhibition of anandamide hydrolysis enhances noradrenergic and GABAergic transmission in the prefrontal cortex and basolateral amygdala of rats subjected to acute swim stress.

J Neurosci Res 2015 May 12;93(5):777-87. Epub 2015 Jan 12.

Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.

Limbic forebrain endocannabinoid (eCB) signaling is critically involved in stress integration by modulating neurotransmitters release. The purpose of this study was to examine, by brain microdialysis, the effects of fatty acid amide hydrolase (FAAH) inhibition on noradrenergic and γ-aminobutyric acid (GABA)-ergic neurotransmission in the prefrontal cortex (PFC) and basolateral amygdala (BLA) of rats subjected to a 20-min swim stress. Microdialysis started on stress- and drug-naïve rats that were treated with the FAAH inhibitor URB597 (0.1 or 0.3 mg/kg) 30 min before undergoing the stress procedure. Dialysate samples were collected every 20 min from the beginning of the experiment. Concentrations of noradrenaline (NA) and GABA were determined by HPLC coupled to electrochemical and fluorescence detection, respectively. We found that neither URB597 treatment nor 20 min of swim stress exposure per se altered NA and GABA extracellular levels in PFC or BLA. Interestingly, rats treated with 0.1 mg/kg of URB597 followed by 20 min of stress showed significantly higher NA and GABA levels in PFC and BLA. These effects were absent in rats treated with 0.3 mg/kg URB597, indicating a dose-specific effect. Moreover, we found that the pretreatment with the CB1 receptor antagonist rimonabant blocked the URB597 effects on NA and GABA release in PFC and BLA of animals subjected to forced swimming. The present study might provide an important first step toward understanding the mechanisms through which URB597 modulates stress-induced neuroendocrine secretion and behavioral coping strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.23539DOI Listing
May 2015

Mapping pathological phenotypes in reelin mutant mice.

Front Pediatr 2014 4;2:95. Epub 2014 Sep 4.

Neurotoxicology and Neuroendocrinology Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità , Rome , Italy.

Autism Spectrum Disorders (ASD) are neurodevelopmental disorders with multifactorial origin characterized by social communication deficits and the presence of repetitive behaviors/interests. Several studies showed an association between the reelin gene mutation and increased risk of ASD and a reduced reelin expression in some brain regions of ASD subjects, suggesting a role for reelin deficiency in ASD etiology. Reelin is a large extracellular matrix glycoprotein playing important roles during development of the central nervous system. To deeply investigate the role of reelin dysfunction as vulnerability factor in ASD, we assessed the behavioral, neurochemical, and brain morphological features of reeler male mice. We recently reported a genotype-dependent deviation in the ultrasonic vocal repertoire and a general delay in motor development of reeler pups. We now report that adult male heterozygous (Het) reeler mice did not show social behavior and communication deficits during male-female social interactions. Wildtype and Het mice showed a typical light/dark locomotor activity profile, with a peak during the central interval of the dark phase. However, when faced with a mild stressful stimulus (a saline injection) only Het mice showed an over response to stress. In addition to the behavioral studies, we conducted high performance liquid chromatography and magnetic resonance imaging and spectroscopy to investigate whether reelin mutation influences brain monoamine and metabolites levels in regions involved in ASD. Low levels of dopamine in cortex and high levels of glutamate and taurine in hippocampus were detected in Het mice, in line with clinical data collected on ASD children. Altogether, our data detected subtle but relevant neurochemical abnormalities in reeler mice supporting this mutant line, particularly male subjects, as a valid experimental model to estimate the contribution played by reelin deficiency in the global ASD neurobehavioral phenotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fped.2014.00095DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154529PMC
September 2014

The role of endocannabinoid signaling in the molecular mechanisms of neurodegeneration in Alzheimer's disease.

J Alzheimers Dis 2015 ;43(4):1115-36

Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy.

Alzheimer's disease (AD) is the most common form of progressive neurodegenerative disease characterized by cognitive impairment and mental disorders. The actual cause and cascade of events in the progression of this pathology is not fully determined. AD is multifaceted in nature and is linked to different multiple mechanisms in the brain. This aspect is related to the lack of efficacious therapies that could slow down or hinder the disease onset/progression. The ideal treatment for AD should be able to modulate the disease through multiple mechanisms rather than targeting a single dysregulated pathway. Recently, the endocannabinoid system emerged as a novel potential therapeutic target to treat AD. In fact, exogenous and endogenous cannabinoids seem to be able to modulate multiple processes in AD, although the mechanisms that are involved are not fully elucidated. This review provides an update of this area. In this review, we recapitulate the role of endocannabinoid signaling in AD and the probable mechanisms through which modulators of the endocannabinoid system provide their effects, thus highlighting how this target might provide more advantages over other therapeutic targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-141635DOI Listing
August 2015

Role of the basolateral amygdala in mediating the effects of the fatty acid amide hydrolase inhibitor URB597 on HPA axis response to stress.

Eur Neuropsychopharmacol 2014 Sep 19;24(9):1511-23. Epub 2014 Jul 19.

Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, 00185, Italy. Electronic address:

The endocannabinoid system is an important regulator of neuroendocrine and behavioral adaptation in stress related disorders thus representing a novel potential therapeutic target. The aim of this study was to determine the effects of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on stress mediators of HPA axis and to study the role of the basolateral amygdala (BLA) in responses to forced swim stress. Systemic administration of URB597 (0.1 and 0.3mg/kg) reduced the forced swim stress-induced activation of HPA axis. More specifically, URB597 decreased stress-induced corticotropin-releasing hormone (CRH) mRNA expression in the paraventricular nucleus (PVN) of the hypothalamus, and pro-opiomelanocortin (POMC) mRNA expression dose-dependently in pituitary gland without affecting plasma corticosterone levels. URB597 treatment also attenuated stress-induced neuronal activation of the amygdala and PVN, and increased neuronal activation in the locus coeruleus (LC) and nucleus of solitary tract (NTS). Injection of the CB1 receptor antagonist AM251 (1ng/side) in the BLA significantly attenuated URB597-mediated effects in the PVN and completely blocked those induced in the BLA. These results suggest that the BLA is a key structure involved in the anti-stress effects of URB597, and support the evidence that enhancement of endogenous cannabinoid signaling by inhibiting FAAH represents a potential therapeutic strategy for the management of stress-related disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.euroneuro.2014.07.005DOI Listing
September 2014

Oleoylethanolamide: a novel potential pharmacological alternative to cannabinoid antagonists for the control of appetite.

Biomed Res Int 2014 3;2014:203425. Epub 2014 Apr 3.

Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy.

The initial pharmaceutical interest for the endocannabinoid system as a target for antiobesity therapies has been restricted by the severe adverse effects of the CB1 antagonist rimonabant. This study points at oleoylethanolamide (OEA), a monounsaturated analogue, and functional antagonist of anandamide, as a potential and safer antiobesity alternative to CB1 antagonism. Mice treated with equal doses (5 or 10 mg/kg, i.p.) of OEA or rimonabant were analyzed for the progressive expression of spontaneous behaviors (eating, grooming, rearing, locomotion, and resting) occurring during the development of satiety, according to the paradigm called behavioral satiety sequence (BSS). Both drugs reduced food (wet mash) intake to a similar extent. OEA treatment decreased eating activity within the first 30 min and caused a temporary increase of resting time that was not accompanied by any decline of horizontal, vertical and total motor activity. Besides decreasing eating activity, rimonabant caused a marked increase of the time spent grooming and decreased horizontal motor activity, alterations that might be indicative of aversive nonmotivational effects on feeding. These results support the idea that OEA suppresses appetite by stimulating satiety and that its profile of action might be predictive of safer effects in humans as a novel antiobesity treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2014/203425DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996326PMC
January 2015

Differences in the structure of drinking, cart expression and dopamine turnover between polydipsic and non polydipsic rats in the quinpirole model of psychotic polydipsia.

Psychopharmacology (Berl) 2014 Oct 20;231(19):3889-97. Epub 2014 Mar 20.

Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 5 Piazzale Aldo Moro, 00185, Rome, Italy.

Rationale: Dopaminergic D2/D3 agonist quinpirole (QNP) elicits nonregulatory drinking in rats, a model of psychotic polydipsia. Why only a fraction of QNP-treated rats responds to the treatment becoming polydipsic is still unclear.

Objectives: To unveil possible factors contributing to such variability, we analyzed drinking microstructure in saline and QNP-treated rats, the hypothalamic expression of the cocaine and amphetamine regulated transcript (CART), and the monoaminergic turnover in selected brain areas.

Methods: Rats were daily treated with saline or QNP 0.5 mg/kg, and their 5-h water intake was measured for five consecutive days. The number of bouts and episodes of licking, and their duration, were also measured. Brain CART expression was measured by in situ hybridization and monoamines turnover by HPLC analysis of tissue extracts. Based on the amount of water ingested during the 5-h session, QNP-treated rats were post hoc grouped in polydipsic (PD) and in nonpolydipsic (NPD) rats, and the results compared accordingly.

Results: The number of drinking bouts and episodes increased in PD rats, while NPD rats behaved as the controls. CART expression decreased in the arcuate nucleus of the hypothalamus of the PD rats. In contrast, both PD and NPD rats showed a reduction of DA turnover in both ventral tegmental area (VTA) and nucleus accumbens (NAcc). No difference was detected in the turnover of 5HT and NA.

Conclusions: Microstructure analysis confirms that QNP acts on the appetitive component of drinking behavior, making it compulsive. CART expression reduction in response to dopaminergic hyperstimulation might sustain excessive drinking in PD rats.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00213-014-3527-0DOI Listing
October 2014

Altered expression of the CB1 cannabinoid receptor in the triple transgenic mouse model of Alzheimer's disease.

J Alzheimers Dis 2014 ;40(3):701-12

Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.

The endocannabinoid system has gained much attention as a new potential pharmacotherapeutic target in various neurodegenerative diseases, including Alzheimer's disease (AD). However, the association between CB1 alterations and the development of AD neuropathology is unclear and often contradictory. In this study, brain CB1 mRNA and CB1 protein levels were analyzed in 3 × Tg-AD mice and compared to wild-type littermates at 2, 6 and 12 months of age, using in-situ hybridization and immunohistochemistry, respectively. Semiquantitative analysis of CB1 expression focused on the prefrontal cortex (PFC), prelimbic cortex, dorsal hippocampus (DH), basolateral amygdala complex (BLA), and ventral hippocampus (VH), all areas with high CB1 densities that are strongly affected by neuropathology in 3 × Tg-AD mice. At 2 months of age, there was no change in CB1 mRNA and protein levels in 3 × Tg-AD mice compared to Non-Tg mice in all brain areas analyzed. However, at 6 and 12 months of age, CB1 mRNA levels were significantly higher in PFC, DH, and BLA, and lower in VH in 3 × Tg-AD mice compared to wild-type littermates. CB1 immunohistochemistry revealed that CB1 protein expression was unchanged in 3 × Tg-AD at 2 and 6 months of age, while a significant decrease in CB1 receptor immunoreactivity was detected in the BLA and DH of 12-month-old 3 × Tg-AD mice, with no sign of alteration in other brain areas. The altered CB1 levels appear, rather, to be age-and/or pathology-dependent, indicating an involvement of the endocannabinoid system in AD pathology and supporting the ECS as a potential novel therapeutic target for treatment of AD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-131910DOI Listing
December 2014

Biological mechanisms associated with increased perseveration and hyperactivity in a genetic mouse model of neurodevelopmental disorder.

Psychoneuroendocrinology 2013 Aug 29;38(8):1370-80. Epub 2012 Dec 29.

Behavioural Genetics Group and Neuroscience and Mental Health Research Institute, Schools of Psychology and Medicine, Cardiff University, Cardiff, UK.

Chromosomal deletions at Xp22.3 appear to influence vulnerability to the neurodevelopmental disorders attention deficit hyperactivity disorder (ADHD) and autism. 39,X(Y*)O mice, which lack the murine orthologue of the Xp22.3 ADHD candidate gene STS (encoding steroid sulfatase), exhibit behavioural phenotypes relevant to such disorders (e.g. hyperactivity), elevated hippocampal serotonin (5-HT) levels, and reduced serum levels of dehydroepiandrosterone (DHEA). Here we initially show that 39,X(Y*)O mice are also deficient for the recently-characterised murine orthologue of the Xp22.3 autism candidate gene ASMT (encoding acetylserotonin-O-methyltransferase). Subsequently, to specify potential behavioural correlates of elevated hippocampal 5-HT arising due to the genetic lesion, we compared 39,X(Y*)O MF1 mice to 40,XY MF1 mice on behavioural tasks taxing hippocampal and/or 5-HT function (a 'foraging' task, an object-location task, and the 1-choice serial reaction time task of impulsivity). Although Sts/Asmt deficiency did not influence foraging behaviour, reactivity to familiar objects in novel locations, or 'ability to wait', it did result in markedly increased response rates; these rates correlated with hippocampal 5-HT levels and are likely to index behavioural perseveration, a frequent feature of neurodevelopmental disorders. Additionally, we show that whilst there was no systematic relationship between serum DHEA levels and hippocampal 5-HT levels across 39,X(Y*)O and 40,XY mice, there was a significant inverse linear correlation between serum DHEA levels and activity. Our data suggest that deficiency for genes within Xp22.3 could influence core behavioural features of neurodevelopmental disorders via dissociable effects on hippocampal neurochemistry and steroid hormone levels, and that the mediating neurobiological mechanisms may be investigated in the 39,X(Y*)O model.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.psyneuen.2012.12.002DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690523PMC
August 2013

Altered serotonergic function may partially account for behavioral endophenotypes in steroid sulfatase-deficient mice.

Neuropsychopharmacology 2012 Apr 21;37(5):1267-74. Epub 2011 Dec 21.

Behavioral Genetics Group, Schools of Medicine and Psychology, Cardiff University, Cardiff, UK.

The X-linked gene STS encodes the steroid hormone-modulating enzyme steroid sulfatase. Loss-of-function of STS, and variation within the gene, have been associated with vulnerability to developing attention deficit hyperactivity disorder (ADHD), a neurodevelopmental condition characterized by inattention, severe impulsivity, hyperactivity, and motivational deficits. ADHD is commonly comorbid with a variety of disorders, including obsessive-compulsive disorder. The neurobiological role of steroid sulfatase, and therefore its potential role in ADHD and associated comorbidities, is currently poorly understood. The 39,X(Y)*O mouse, which lacks the Sts gene, exhibits several behavioral abnormalities relevant to ADHD including inattention and hyperactivity. Here, we show that, unexpectedly, 39,X(Y)*O mice achieve higher ratios than wild-type mice on a progressive ratio (PR) task thought to index motivation, but that there is no difference between the two groups on a behavioral task thought to index compulsivity (marble burying). High performance liquid chromatography analysis of monoamine levels in wild type and 39,X(Y)*O brain tissue regions (the frontal cortex, striatum, thalamus, hippocampus, and cerebellum) revealed significantly higher levels of 5-hydroxytryptamine (5-HT) in the striatum and hippocampus of 39,X(Y)*O mice. Significant correlations between hippocampal 5-HT levels and PR performance, and between striatal 5-HT levels and locomotor activity strongly implicate regionally-specific perturbations of the 5-HT system as a neurobiological candidate for behavioral differences between 40,XY and 39,X(Y)*O mice. These data suggest that inactivating mutations and functional variants within STS might exert their influence on ADHD vulnerability, and disorder endophenotypes through modulation of the serotonergic system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/npp.2011.314DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3306888PMC
April 2012

Study of forced decomposition behavior of lamivudine using LC, LC-MS/TOF and MS(n).

J Pharm Biomed Anal 2009 Jan 15;49(1):55-63. Epub 2008 Oct 15.

Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar 160062, Punjab, India.

Lamivudine was subjected to forced decomposition conditions of hydrolysis (neutral, acidic and alkaline), oxidation, photolysis and thermal stress, as suggested in the ICH guideline Q1A(R2). The drug showed instability in acid and alkali, while it remained stable in neutral conditions. It also degraded extensively under oxidative environment. It remained stable to light and thermal stress. In total, five degradation products were formed, which could be separated by LC on a C18 column using a gradient method. To characterize the products, first a complete fragmentation pathway of the drug was established by carrying out multi-stage (MS(n)) and MS/TOF accurate mass studies. The same was compared to fragment pattern of the degradation products resulting from LC-MS/TOF studies. The accurate mass values obtained from LC-MS/TOF were used to obtain elemental compositions, and the total information helped in identification of the degradation products. Subsequently, degradation pathway of the drug was laid down, along with mechanisms of formation of the degradation products. There is no previous information on these aspects on the drug in the literature.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2008.10.002DOI Listing
January 2009
-->