Publications by authors named "Gary M Woodward"

6 Publications

  • Page 1 of 1

Echocardiographic Correlates of In-Hospital Death in Patients with Acute COVID-19 Infection: The World Alliance Societies of Echocardiography (WASE-COVID) Study.

J Am Soc Echocardiogr 2021 May 21. Epub 2021 May 21.

MedStar Health Research Institute, Washington District of Columbia. Electronic address:

Background: The novel severe acute respiratory syndrome coronavirus-2 virus, which has led to the global coronavirus disease-2019 (COVID-19) pandemic is known to adversely affect the cardiovascular system through multiple mechanisms. In this international, multicenter study conducted by the World Alliance Societies of Echocardiography, we aim to determine the clinical and echocardiographic phenotype of acute cardiac disease in COVID-19 patients, to explore phenotypic differences in different geographic regions across the world, and to identify parameters associated with in-hospital mortality.

Methods: We studied 870 patients with acute COVID-19 infection from 13 medical centers in four world regions (Asia, Europe, United States, Latin America) who had undergone transthoracic echocardiograms. Clinical and laboratory data were collected, including patient outcomes. Anonymized echocardiograms were analyzed with automated, machine learning-derived algorithms to calculate left ventricular (LV) volumes, ejection fraction, and LV longitudinal strain (LS). Right-sided echocardiographic parameters that were measured included right ventricular (RV) LS, RV free-wall strain (FWS), and RV basal diameter. Multivariate regression analysis was performed to identify clinical and echocardiographic parameters associated with in-hospital mortality.

Results: Significant regional differences were noted in terms of patient comorbidities, severity of illness, clinical biomarkers, and LV and RV echocardiographic metrics. Overall in-hospital mortality was 21.6%. Parameters associated with mortality in a multivariate analysis were age (odds ratio [OR] = 1.12 [1.05, 1.22], P = .003), previous lung disease (OR = 7.32 [1.56, 42.2], P = .015), LVLS (OR = 1.18 [1.05, 1.36], P = .012), lactic dehydrogenase (OR = 6.17 [1.74, 28.7], P = .009), and RVFWS (OR = 1.14 [1.04, 1.26], P = .007).

Conclusions: Left ventricular dysfunction is noted in approximately 20% and RV dysfunction in approximately 30% of patients with acute COVID-19 illness and portend a poor prognosis. Age at presentation, previous lung disease, lactic dehydrogenase, LVLS, and RVFWS were independently associated with in-hospital mortality. Regional differences in cardiac phenotype highlight the significant differences in patient acuity as well as echocardiographic utilization in different parts of the world.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
May 2021

A Machine Learning Approach for the Automated Interpretation of Plasma Amino Acid Profiles.

Clin Chem 2020 09;66(9):1210-1218

Biochemical Sciences, Viapath, Guys & St Thomas' NHS Foundation Trust, London, UK.

Background: Plasma amino acid (PAA) profiles are used in routine clinical practice for the diagnosis and monitoring of inherited disorders of amino acid metabolism, organic acidemias, and urea cycle defects. Interpretation of PAA profiles is complex and requires substantial training and expertise to perform. Given previous demonstrations of the ability of machine learning (ML) algorithms to interpret complex clinical biochemistry data, we sought to determine if ML-derived classifiers could interpret PAA profiles with high predictive performance.

Methods: We collected PAA profiling data routinely performed within a clinical biochemistry laboratory (2084 profiles) and developed decision support classifiers with several ML algorithms. We tested the generalization performance of each classifier using a nested cross-validation (CV) procedure and examined the effect of various subsampling, feature selection, and ensemble learning strategies.

Results: The classifiers demonstrated excellent predictive performance, with the 3 ML algorithms tested producing comparable results. The best-performing ensemble binary classifier achieved a mean precision-recall (PR) AUC of 0.957 (95% CI 0.952, 0.962) and the best-performing ensemble multiclass classifier achieved a mean F4 score of 0.788 (0.773, 0.803).

Conclusions: This work builds upon previous demonstrations of the utility of ML-derived decision support tools in clinical biochemistry laboratories. Our findings suggest that, pending additional validation studies, such tools could potentially be used in routine clinical practice to streamline and aid the interpretation of PAA profiles. This would be particularly useful in laboratories with limited resources and large workloads. We provide the necessary code for other laboratories to develop their own decision support tools.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
September 2020

Using Machine Learning to Aid the Interpretation of Urine Steroid Profiles.

Clin Chem 2018 11 10;64(11):1586-1595. Epub 2018 Aug 10.

Department of Clinical Biochemistry, University College London Hospitals, London, UK.

Background: Urine steroid profiles are used in clinical practice for the diagnosis and monitoring of disorders of steroidogenesis and adrenal pathologies. Machine learning (ML) algorithms are powerful computational tools used extensively for the recognition of patterns in large data sets. Here, we investigated the utility of various ML algorithms for the automated biochemical interpretation of urine steroid profiles to support current clinical practices.

Methods: Data from 4619 urine steroid profiles processed between June 2012 and October 2016 were retrospectively collected. Of these, 1314 profiles were used to train and test various ML classifiers' abilities to differentiate between "No significant abnormality" and "?Abnormal" profiles. Further classifiers were trained and tested for their ability to predict the specific biochemical interpretation of the profiles.

Results: The best performing binary classifier could predict the interpretation of No significant abnormality and ?Abnormal profiles with a mean area under the ROC curve of 0.955 (95% CI, 0.949-0.961). In addition, the best performing multiclass classifier could predict the individual abnormal profile interpretation with a mean balanced accuracy of 0.873 (0.865-0.880).

Conclusions: Here we have described the application of ML algorithms to the automated interpretation of urine steroid profiles. This provides a proof-of-concept application of ML algorithms to complex clinical laboratory data that has the potential to improve laboratory efficiency in a setting of limited staff resources.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
November 2018

Phenolic metabolites of anthocyanins modulate mechanisms of endothelial function.

J Agric Food Chem 2015 Mar 2;63(9):2423-31. Epub 2015 Mar 2.

Department of Nutrition, Norwich Medical School, University of East Anglia , Norwich NR4 7TJ, United Kingdom.

Anthocyanins are reported to have vascular bioactivity, however their mechanisms of action are largely unknown. Evidence suggests that anthocyanins modulate endothelial function, potentially by increasing nitric oxide (NO) synthesis, or enhancing NO bioavailability. This study compared the activity of cyanidin-3-glucoside, its degradation product protocatechuic acid, and phase II metabolite, vanillic acid. Production of NO and superoxide and expression of endothelial NO synthase (eNOS), NADPH oxidase (NOX), and heme oxygenase-1 (HO-1) were established in human vascular cell models. Nitric oxide levels were not modulated by the treatments, although eNOS was upregulated by cyanidin-3-glucoside, and superoxide production was decreased by both phenolic acids. Vanillic acid upregulated p22(phox) mRNA but did not alter NOX protein expression, although trends were observed for p47(phox) downregulation and HO-1 upregulation. Anthocyanin metabolites may therefore modulate vascular reactivity by inducing HO-1 and modulating NOX activity, resulting in reduced superoxide production and improved NO bioavailability.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
March 2015

Anthocyanins remain stable during commercial blackcurrant juice processing.

J Food Sci 2011 Aug 5;76(6):S408-14. Epub 2011 Jul 5.

School of Medicine, Univ. of East Anglia, Norwich NR4 7TJ, UK.

Unlabelled: It remains important to establish the stability of anthocyanins throughout commercial processing in order to maintain the bioactivity of the processed food/s. The present study aimed to assess the recovery and formation of anthocyanins and their free phenolic acid degradation products during the commercial processing of blackcurrant juice concentrate. A bench-scale processing model was also established to allow for alteration of predefined parameters to identify where commercial processes could be modified to influence anthocyanin yield. No significant loss in anthocyanins was observed throughout the commercial processing of blackcurrants, from whole berry through milling, to pectin hydrolysis and sodium bisulphite addition (P ≥ 0.7). No significant loss in anthocyanins was observed following the subsequent processing of pressed juice, through pasteurization, decantation, filtration, and concentration (P ≥ 0.9). Similarly, the bench-scale model showed no significant losses in anthocyanin content except during pasteurization (22%± 0.7%, P < 0.001). In the full-factorial Design of Experiment model analysis, only sodium bisulphite concentration had an impact on anthocyanin recovery, which resulted in an increase (23% to 27%; P < 0.001) in final anthocyanin concentration. No phenolic degradation products (free protocatechuic acid or gallic acid derived from cyanidin and delphinin species, respectively) were identified in any processed sample when compared to authentic analytical standards, analyzed by ultra-performance liquid chromatography DAD.

Practical Application: This article provides crucial data directly applicable to commercial juice processing, such as improving anthocyanin yield and practical considerations for anthocyanin stability and degradation. This aspect is particularly pertinent considering the current commercial interest in anthocyanin-derived phenolic acids and their health-related benefits. Further research and development targets in the area of commercial juice product development are identified.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
August 2011

Anthocyanin-derived phenolic acids form glucuronides following simulated gastrointestinal digestion and microsomal glucuronidation.

Mol Nutr Food Res 2011 Mar 28;55(3):378-86. Epub 2010 Oct 28.

School of Medicine, University of East Anglia, Norwich, UK.

Scope: Current research indicates that anthocyanins are primarily degraded to form phenolic acid products. However, no studies have yet demonstrated the metabolic conjugation of these anthocyanin-derived phenolic acids in humans.

Methods And Results: Within the present study, a simulated gastrointestinal digestion model was used to evaluate the potential degradation of anthocyanins post-consumption. Subsequently, cyanidin (Cy) and pelargonidin and their degradation products, protocatechuic acid and 4-hydroxybenzoic acid, were incubated in the presence of human liver microsomes to assess their potential to form hepatic glucuronide conjugates. For structural conformation, phenolic glucuronides were chemically synthesised and compared to the microsomal metabolites. During the simulated gastric digestion, anthocyanin glycosides (200 μM) remained stable however their aglycone derivatives were significantly degraded (20% loss), while during subsequent pancreatic/intestinal digestion only pelargonidin-3-glucoside remained stable while cyanidin-3-glucoside (30% loss) and Cy and pelagonidin aglycones were significantly degraded (100% loss, respectively). Following microsomal metabolism, pelargonidin formed 4-hydroxybenzoic acid, which was further metabolised (65%) to form two additional glucuronide conjugates, while Cy formed protocatechuic acid, which was further metabolised (43%) to form three glucuronide conjugates.

Conclusions: We propose that following ingestion, anthocyanins may be found in the systemic circulation as free or conjugated phenolic acids, which should be a focus of future dietary interventions.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
March 2011