Publications by authors named "Gary J Overmann"

8 Publications

  • Page 1 of 1

Grouping 34 Chemicals Based on Mode of Action Using Connectivity Mapping.

Toxicol Sci 2016 06 29;151(2):447-61. Epub 2016 Mar 29.

*Mason Business Center, The Procter & Gamble Company, Cincinnati, Ohio 45040 and.

Connectivity mapping is a method used in the pharmaceutical industry to find connections between small molecules, disease states, and genes. The concept can be applied to a predictive toxicology paradigm to find connections between chemicals, adverse events, and genes. In order to assess the applicability of the technique for predictive toxicology purposes, we performed gene array experiments on 34 different chemicals: bisphenol A, genistein, ethinyl-estradiol, tamoxifen, clofibrate, dehydorepiandrosterone, troglitazone, diethylhexyl phthalate, flutamide, trenbolone, phenobarbital, retinoic acid, thyroxine, 1α,25-dihydroxyvitamin D3, clobetasol, farnesol, chenodeoxycholic acid, progesterone, RU486, ketoconazole, valproic acid, desferrioxamine, amoxicillin, 6-aminonicotinamide, metformin, phenformin, methotrexate, vinblastine, ANIT (1-naphthyl isothiocyanate), griseofulvin, nicotine, imidacloprid, vorinostat, 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) at the 6-, 24-, and 48-hour time points for 3 different concentrations in the 4 cell lines: MCF7, Ishikawa, HepaRG, and HepG2 GEO (super series accession no.: GSE69851). The 34 chemicals were grouped in to predefined mode of action (MOA)-based chemical classes based on current literature. Connectivity mapping was used to find linkages between each chemical and between chemical classes. Cell line-specific linkages were compared with each other and to test whether the method was platform and user independent, a similar analysis was performed against publicly available data. The study showed that the method can group chemicals based on MOAs and the inter-chemical class comparison alluded to connections between MOAs that were not predefined. Comparison to the publicly available data showed that the method is user and platform independent. The results provide an example of an alternate data analysis process for high-content data, beneficial for predictive toxicology, especially when grouping chemicals for read across purposes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfw058DOI Listing
June 2016

A novel transcriptomics based in vitro method to compare and predict hepatotoxicity based on mode of action.

Toxicology 2015 Feb 2;328:29-39. Epub 2014 Dec 2.

Mason Business Center, The Procter & Gamble Company, Cincinnati, OH 45040, USA.

High-content data have the potential to inform mechanism of action for toxicants. However, most data to support this notion have been generated in vivo. Because many cell lines and primary cells maintain a differentiated cell phenotype, it is possible that cells grown in culture may also be useful in predictive toxicology via high-content approaches such as whole-genome microarray. We evaluated global changes in gene expression in primary rat hepatocytes exposed to two concentrations of ten hepatotoxicants: acetaminophen (APAP), β-naphthoflavone (BNF), chlorpromazine (CPZ), clofibrate (CLO), bis(2-ethylhexyl)phthalate (DEHP), diisononyl phthalate (DINP), methapyrilene (MP), valproic acid (VPA), phenobarbital (PB) and WY14643 at two separate time points. These compounds were selected to cover a range of mechanisms of toxicity, with some overlap in expected mechanism to address the question of how predictive gene expression analysis is, for a given mode of action. Gene expression microarray analysis was performed on cells after 24h and 48h of exposure to each chemical using Affymetrix microarrays. Cluster analysis suggests that the primary hepatocyte model was capable of responding to these hepatotoxicants, with changes in gene expression that appear to be mode of action-specific. Among the different methods used for analysis of the data, a combination method that used pathways (MOAs) to filter total probesets provided the most robust analysis. The analysis resulted in the phthalates clustering closely together, with the two other peroxisome proliferators, CLO and WY14643, eliciting similar responses at the whole-genome and pathway levels. The Cyp inducers PB, MP, CPZ and BNF also clustered together. VPA and APAP had profiles that were unique. A similar analysis was performed on externally available (TG-GATES) in vivo data for 6 of the chemicals (APAP, CLO, CPZ, MP, MP and WY14643) and compared to the in vitro result. These results indicate that transcription profiling using an in vitro assay may offer pertinent biological data to support predictions of in vivo hepatotoxicity potential.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2014.11.008DOI Listing
February 2015

Effects of transplacental 17-α-ethynyl estradiol or bisphenol A on the developmental profile of steroidogenic acute regulatory protein in the rat testis.

Birth Defects Res B Dev Reprod Toxicol 2012 Aug 2;95(4):318-25. Epub 2012 Jul 2.

Mason Business Center, The Procter and Gamble Company, Mason, OH, USA.

Previous research from our laboratory has determined the transcript profiles for developing fetal rat female and male reproductive tracts following transplacental exposure to estrogens. Prenatal exposure to bisphenol A (BPA) or 17-α-ethynyl estradiol (EE) significantly affects steroidogenic acute regulatory (StAR) protein transcript levels in the developing male rat reproductive tract. The purpose of this study was to establish the intratesticular distribution and temporal expression pattern of StAR, a key gene involved in steroidogenesis. Beginning on gestation day (GD) 11, pregnant Sprague-Dawley rats were exposed daily to 10μg/kg/day EE and fetal testes were harvested at GD16, 18, or 20. Quantitative reverse transcriptase PCR (QRT-PCR) demonstrated no significant difference in StAR transcript levels present at GD16. However, at GD18, StAR transcripts were significantly decreased following exposure. Immunohistochemistry demonstrated similar StAR protein levels in interstitial region of GD16 testes and an obvious decrease in StAR protein levels in the interstitial region of GD18 testes. Moreover, starting at GD11 additional dams were dosed with 0.001 or 0.1 μg/kg/day EE or 0.02, 0.5, 400 mg/kg/day BPA via subcutaneous injections. QRT-PCR validated previous microarray dose-related decreases in StAR transcripts at GD20, whereas immunohistochemistry results demonstrated decreases in StAR protein levels in the interstitial region at the highest EE and BPA doses only. Neither EE nor BPA exposure caused morphological changes in the developing seminiferous cords, Sertoli cells, gonocytes, or the interstitial region or Leydig cells at GD16-20. High levels of estrogens decrease StAR expression in the fetal rat testis during late gestation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/bdrb.21020DOI Listing
August 2012

Uterine temporal response to acute exposure to 17alpha-ethinyl estradiol in the immature rat.

Toxicol Sci 2007 Jun 9;97(2):467-90. Epub 2007 Mar 9.

The Procter and Gamble Company, Miami Valley Innovation Center, Cincinnati, OH 45253, USA.

The rat uterus responds to acute estrogen treatment with a series of well-characterized physiological responses; however, the gene expression changes required to elicit these responses have not been fully characterized. In order to understand early events induced by estrogen exposure in vivo, we evaluated the temporal gene expression in the uterus of the immature rat after a single dose of 17 alpha-ethinyl estradiol (EE) by microarray analysis, evaluating the expression of 15,923 genes. Immature 20-day-old rats were exposed to a single dose of EE (10 microg/kg), and the effects on uterine histology, weight, and gene expression were determined after 1, 2, 8, 24, 48, 72, and 96 h. EE induced changes in the expression of 3867 genes, at least at one time point (p < or = 0.0001), and at least 1.5-fold (up- or downregulated). Specifically, the expression of 8, 116, 3030, 2076, 381, 445, and 125 genes was modified at 1, 2, 8, 24, 48, 72, or 96 h after exposure to EE, respectively (p < or = 0.0001, t-test). At the tissue and organ level, a clear uterotrophic response was elicited by EE after only 8 h, reaching a maximum after 24 h and remaining detectable even after 96 h of exposure. The uterine phenotypic changes were induced by sequential changes in the transcriptional status of a large number of genes, in a program that involves multiple molecular pathways. Using the Gene Ontology to better understand the temporal response to estrogen exposure, we determined that the earliest changes were in the expression of genes whose products are involved in transcriptional regulation and signal transduction, followed by genes implicated in protein synthesis, energy utilization, solute transport, cell proliferation and differentiation, tissue remodeling, and immunological responses among other pathways. The compendium of genes here presented represents a comprehensive compilation of estrogen-responsive genes involved in the uterotrophic response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfm046DOI Listing
June 2007

Gene expression changes induced in the testis by transplacental exposure to high and low doses of 17{alpha}-ethynyl estradiol, genistein, or bisphenol A.

Toxicol Sci 2005 Aug 18;86(2):396-416. Epub 2005 May 18.

Miami Valley Innovation Center, The Procter and Gamble Company, Cincinnati, Ohio 45253, USA.

The purpose of this study was to determine (1) the transcriptional program elicited by exposure to three estrogen receptor (ER) agonists: 17 alpha-ethynyl estradiol (EE), genistein (Ges), and bisphenol A (BPA) during fetal development of the rat testis and epididymis; and (2) whether very low dosages of estrogens (evaluated over five orders of magnitude of dosage) produce unexpected changes in gene expression (i.e., a non-monotonic dose-response curve). In three independently conducted experiments, Sprague-Dawley rats were dosed (sc) with 0.001-10 microg EE/kg/day, 0.001-100 mg Ges/kg/day, or 0.002-400 mg BPA/kg/day. While morphological changes in the developing reproductive system were not observed, the gene expression profile of target tissues were modified in a dose-responsive manner. Independent dose-response analyses of the three studies identified 59 genes that are significantly modified by EE, 23 genes by Ges, and 15 genes by BPA (out of 8740), by at least 1.5 fold (up- or down-regulated). Even more genes were observed to be significantly changed when only the high dose is compared with all lower doses: 141, 46, and 67 genes, respectively. Global analyses aimed at detecting genes consistently modified by all of the chemicals identified 50 genes whose expression changed in the same direction across the three chemicals. The dose-response curve for gene expression changes was monotonic for each chemical, with both the number of genes significantly changed and the magnitude of change, for each gene, decreasing with decreasing dose. Using the available annotation of the gene expression changes induced by ER-agonist, our data suggest that a variety of cellular pathways are affected by estrogen exposure. These results indicate that gene expression data are diagnostic of mode of action and, if they are evaluated in the context of traditional toxicological end-points, can be used to elucidate dose-response characteristics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfi198DOI Listing
August 2005

Impact of the phytoestrogen content of laboratory animal feed on the gene expression profile of the reproductive system in the immature female rat.

Environ Health Perspect 2004 Nov;112(15):1519-26

Miami Valley Laboratories, The Procter and Gamble Company, Cincinnati, Ohio 45253-8707, USA.

The effect of the dietary background of phytoestrogens on the outcome of rodent bioassays used to identify and assess the reproductive hazard of endocrine-disrupting chemicals is controversial. Phytoestrogens, including genistein, daidzein, and coumestrol, are fairly abundant in soybeans and alfalfa, common ingredients of laboratory animal diets. These compounds are weak agonists for the estrogen receptor (ER) and, when administered at sufficient doses, elicit an estrogenic response in vivo. In this study, we assessed the potential estrogenic effects of dietary phytoestrogens at the gene expression level, together with traditional biologic end points, using estrogen-responsive tissues of the immature female rat. We compared the gene expression profile of the uterus and ovaries, as a pool, obtained using a uterotrophic assay protocol, from intact prepubertal rats fed a casein-based diet (free from soy and alfalfa) or a regular rodent diet (Purina 5001) containing soy and alfalfa. Estrogenic potency of the phytoestrogen-containing diet was determined by analyzing uterine wet weight gain, luminal epithelial cell height, and gene expression profile in the uterus and ovaries. These were compared with the same parameters evaluated in animals exposed to a low dose of a potent ER agonist [0.1 microg/kg/day 17alpha-ethynyl estradiol (EE) for 4 days]. Exposure to dietary phytoestrogens or to a low dose of EE did not advance vaginal opening, increase uterine wet weight, or increase luminal epithelial cell height in animals fed either diet. Although there are genes whose expression differs in animals fed the soy/alfalfa-based diet versus the casein diet, those genes are not associated with estrogenic stimulation. The expression of genes well known to be estrogen regulated, such as progesterone receptor, intestinal calcium-binding protein, and complement component 3, is not affected by consumption of the soy/alfalfa-based diet when assessed by microarray or quantitative reverse transcriptase-polymerase chain reaction analysis. Our results indicate that although diet composition has an impact on gene expression in uterus and ovaries, it does not contribute to the effects of an ER agonist.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1247616PMC
http://dx.doi.org/10.1289/ehp.6848DOI Listing
November 2004

Gene expression profile induced by 17 alpha-ethynyl estradiol in the prepubertal female reproductive system of the rat.

Toxicol Sci 2003 Apr 7;72(2):314-30. Epub 2003 Mar 7.

Miami Valley Laboratories, The Procter and Gamble Company, Cincinnati, Ohio 45253, USA.

The profound effects of 17beta-estradiol on cell growth, differentiation, and general homeostasis of the reproductive and other systems, are mediated mostly by regulation of temporal and cell type-specific expression of different genes. In order to understand better the molecular events associated with the activation of the estrogen receptor (ER), we have used microarray technology to determine the transcriptional program and dose-response characteristics of exposure to a potent synthetic estrogen, 17 alpha-ethynyl estradiol (EE), during prepubertal development. Changes in patterns of gene expression were determined in the immature uterus and ovaries of Sprague-Dawley rats on postnatal day (PND) 24, 24 h after exposure to EE, at 0.001, 0.01, 0.1, 1 and 10 micro g EE/kg/day (sc), for four days (dosing from PND 20 to 23). The transcript profiles were compared between treatment groups and controls using oligonucleotide arrays to determine the expression level of approximately 7000 annotated rat genes and over 1740 expressed sequence tags (ESTs). Quantification of the number of genes whose expression was modified by the treatment, for each of the various doses of EE tested, showed clear evidence of a dose-dependent treatment effect that follows a monotonic response, concordant with the dose-response pattern of uterine wet-weight gain and luminal epithelial cell height. The number of genes whose expression is affected by EE exposure increases according to dose. At the highest dose tested of EE, we determined that the expression level of over 300 genes was modified significantly (p < or = 0.0001). A dose-dependent analysis of the transcript profile revealed a set of 88 genes whose expression is significantly and reproducibly modified (increased or decreased) by EE exposure (p < or = 0.0001). The results of this study demonstrate that, exposure to a potent estrogenic chemical during prepubertal maturation changes the gene expression profile of estrogen-sensitive tissues. Furthermore, the products of the EE-regulated genes identified in these tissues have a physiological role in different intracellular pathways, information that will be valuable to determine the mechanism of action of estrogens. Moreover, those genes could be used as biomarkers to identify chemicals with estrogenic activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfg037DOI Listing
April 2003

Gene expression profile induced by 17alpha-ethynyl estradiol, bisphenol A, and genistein in the developing female reproductive system of the rat.

Toxicol Sci 2002 Jul;68(1):184-99

The Procter and Gamble Company, Miami Valley Laboratories, P.O. Box 538707, No. 805, Cincinnati, OH 45253-8707, USA.

Exposure to some compounds with estrogenic activity, during fetal development, has been shown to alter development of reproductive organs, leading to abnormal function and disease either after birth or during adulthood. In order to understand the molecular events associated with the estrogenicity of different chemicals and to determine whether common sets of gene expression changes can be predictive of estrogenic activity, we have used microarray technology to determine the transcriptional program influenced by exposure to this class of compounds during organogenesis and development. Changes in patterns of gene expression were determined in the developing uterus and ovaries of Sprague-Dawley rats on GD 20, exposed to graded dosages (sc) of 17alpha-ethynyl estradiol (EE), genistein, or bisphenol A (BPA) from GD 11 to GD 20. Dose levels were roughly equipotent in estrogenic activity. We compared the transcript profiles between treatment groups and controls, using oligonucleotide arrays to determine the expression level of approximately 7000 rat genes and over 1000 expressed squence tags (ESTs). At the highest tested doses of EE, BPA, or genistein, we determined that less than 2% of the mRNA detected by the array showed a 2-fold or greater change in their expression level (increase or decrease). A dose-dependent analysis of the transcript profile revealed a common set of genes whose expression is significantly and reproducibly modified in the same way by each of the 3 chemicals tested. Additionally, each compound induces changes in the expression of other transcripts that are not in common with the others, which indicated not all compounds with estrogenic activity act alike. The results of this study demonstrate that transplacental exposure to chemicals with estrogenic activity changes the gene expression profile of estrogen-sensitive tissues, and that the analysis of the transcript profile of these tissues could be a valuable approach to determining the estrogenicity of different compounds.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/68.1.184DOI Listing
July 2002