Publications by authors named "Garry P Codling"

2 Publications

  • Page 1 of 1

Oxygenated and Nitrated Polycyclic Aromatic Hydrocarbons in Ambient Air-Levels, Phase Partitioning, Mass Size Distributions, and Inhalation Bioaccessibility.

Environ Sci Technol 2020 03 11;54(5):2615-2625. Epub 2020 Feb 11.

Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany.

Among the nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) are some of the most hazardous substances to public health, mainly because of their carcinogenicity and oxidative potential. Despite these concerns, the concentrations and fate of NPAHs and OPAHs in the atmospheric environment are largely unknown. Ambient air concentrations of 18 NPAHs, 5 quinones, and 5 other OPAHs were determined at two urban and one regional background sites in central Europe. At one of the urban sites, the total (gas and particulate) concentrations of ΣOPAHs were 10.0 ± 9.2 ng/m in winter and 3.5 ± 1.6 ng/m in summer. The gradient to the regional background site exceeded 1 order of magnitude. ΣNPAH concentrations were typically 1 order of magnitude lower than OPAHs. Among OPAHs, 9-fluorenone and (9,10)-anthraquinone were the most abundant species, accompanied by benzanthrone in winter. (9,10)-Anthraquinone represented two-thirds of quinones. We found that a large fraction of the target substance particulate mass was carried by submicrometer particles. The derived inhalation bioaccessibility in the PM size fraction is found to be ≈5% of the total ambient concentration of OPAHs and up to ≈2% for NPAHs. For 9-fluorenone and (9,10)-anthraquinone, up to 86 and 18%, respectively, were found at the rural site. Our results indicate that water solubility could function as a limiting factor for bioaccessibility of inhaled particulate NPAHs and OPAHs, without considerable effect of surfactant lipids and proteins in the lung lining fluid.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.9b06820DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7307896PMC
March 2020

Organochlorine pesticides and polychlorinated biphenyls along an east-to-west gradient in subtropical North Atlantic surface water.

Environ Sci Pollut Res Int 2017 Apr 18;24(12):11045-11052. Epub 2016 Aug 18.

Max Planck Institute for Meteorology, Hamburg, Germany.

Despite the fact that most persistent toxic substances have hardly been primarily emitted for several decades, their concentrations are only slowly decreasing in the global oceans. Surface seawater samples were collected along a 38°-24° N/28°-67° W transect in the subtropical North Atlantic Ocean. While the concentration levels of hexachlorobenzene (2.1-6.1 pg L), dichlorodiphenyltrichloroethane (DDT, up to 2.1 pg L) and polychlorinated biphenyls (PCB, 10.8-24.9 pg L) were in the same range as observed earlier in the North Atlantic, hexachlorocyclohexane (HCH, 90-627 pg L) was found elevated, partly also relative to previous measurements in the same sea region. Hereby, the ratio α-HCH/γ-HCH was very low, 0.09-0.13. Chlordane and endosulfan were found in the range <3.0-11.1 and <5.8-8.8 pg L respectively. DDT metabolites, endrin and related pesticides were found below quantification limits. Spatial pollution patterns in surface seawaters seem to be determined by atmospheric and oceanic transport patterns, rather than by mixing and air-sea equilibrium. The comparison with global multicompartment chemistry-transport model predictions of surface seawater levels indicate underestimated degradation of PCBs and overestimated emissions of endosulfan.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-016-7429-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5393290PMC
April 2017