Publications by authors named "Gaoke Feng"

12 Publications

  • Page 1 of 1

Elevated Plasma Angiopoietinlike Protein 5 (ANGPTL5) Is More Positively Associated with Glucose Metabolism Disorders in Patients with Metabolic Syndrome.

Med Sci Monit 2021 Jan 24;27:e929626. Epub 2021 Jan 24.

Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland).

BACKGROUND Angiopoietinlike protein 5 (ANGPTL5) is an adipocytokine and has an important role in metabolic processes including lipid metabolism, obesity, and type 2 diabetes mellitus. On the basis of these roles, the present study aimed to investigate the level and role of plasma ANGPTL5 in metabolic syndrome (MS) patients. MATERIAL AND METHODS A total of 139 participants was enrolled in this study; 69 of them were diagnosed with MS. Plasma ANGPTL5 levels were measured by enzyme-linked immunosorbent assay. Sex, age, and other laboratory tests were compared statistically. Correlations between ANGPTL5 and biochemical parameters such as lipid levels and insulin resistance were all evaluated statistically. RESULTS In patients with MS, plasma ANGPTL5 levels were higher than in those without MS (P<0.05). Moreover, after adjusting for the glucose profiles, positive correlations were found between plasma ANGPTL5 levels and body mass index (BMI), waist circumference, and waist-hip ratio (WHR); a weak negative correlation was found between ANGPTL5 concentration and high-density lipoprotein cholesterol. After controlling the lipid profiles, positive correlations were found between ANGPTL5 concentration and BMI, WHR, fasting plasma glucose, fasting insulin, glycated hemoglobin, and homeostatic model assessment (HOMA) of insulin resistance; a negative correlation was found between plasma ANGPTL5 concentration and HOMA of ß-cell function. The area under the curve was approximately 0.912 in receiver operating characteristic curve analysis. CONCLUSIONS The findings in the present study showed that plasma ANGPTL5 was more positively correlated with glucose metabolism disorders than with lipid metabolism disorders in patients with MS, which suggested that ANGPTL5 might serve as a potential and useful clinical predictor of MS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.12659/MSM.929626DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7841967PMC
January 2021

An altered left ventricle protein profile in human ischemic cardiomyopathy revealed in comparative quantitative proteomics.

Kardiol Pol 2019 10 22;77(10):951-959. Epub 2019 Aug 22.

Department ofLaboratory Medicine,Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China. Electronic address:

Background: Ischemic cardiomyopathy (ICM) resulting from coronary artery disease is a major cause of heart failure. The identification and quantification of differentially expressed proteins in patients with ICM may potentially lead to more effective diagnostic workup and treatment.

Aims: Liquid chromatography coupled to tandem mass spectrometry analysis was applied to identify differentially expressed proteins in individuals with ICM.

Methods: To identify proteins involved in the molecular mechanisms of ICM, we quantitatively analyzed the left ventricular proteome profiles of patients with ICM who had undergone heart transplantation. Liquid chromatography coupled to tandem mass spectrometry, which presents better comprehensiveness and accuracy of quantification than 2‑dimensional electrophoresis, in combination with bioinformatics was applied to analyze cardiac samples and identify proteins that were differentially expressed in the left ventricles of 6 patients with ICM compared with 7 normal heart donors.

Results: A total of 1723 proteins was successfully quantified in 2 repeated experiments. Out of those, 104 proteins were upregulated and 63 proteins were downregulated in the left ventricles of individuals with ICM. For all these altered proteins, gene ontology (GO) analysis, the Kyoto Encyclopedia of Genes and Genomes pathway mapping, and protein interaction analysis were performed, which showed that most of the proteins were related to the extracellular matrix, metabolism, immune response, muscle contraction, cytoskeleton organization, transcription / translation, and signal transduction. Most importantly, in response to an ischemic stimulus, the C1 inhibitor SERPING1 helped to compensate for increases in complement activation through complement inhibition.

Conclusions: Collectively, these differentially expressed proteins represent potential novel diagnostic and therapeutic targets for the treatment of patients with ICM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.33963/KP.14936DOI Listing
October 2019

Six-month evaluation of novel bioabsorbable scaffolds composed of poly-L-lactic acid and amorphous calcium phosphate nanoparticles in porcine coronary arteries.

J Biomater Appl 2018 08;33(2):227-233

1 Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.

Objective Using coronary angiography and intravascular ultrasound methods to evaluate the performance of the novel fully bioabsorbable scaffold (NFBS) composed of poly-L-lactic acid/amorphous calcium phosphate (PLLA/ACP) at six-month follow-up by comparing with PLLA scaffolds Methods Twelve PLLA/ACP scaffolds and 12 PLLA scaffolds were implanted into the coronary arteries of 12 miniature pigs. Quantitative coronary angiography (QCA) was used to measure the reference vessel diameter (RVD), mean lumen diameter (MLD) and late lumen loss (LLL). According to IVUS images, we calculated the strut malapposition rate (SMR) at post implantation, strut overlap rate (SOR), reference vessel area (RVA), mean stent area (MSA), mean lumen area (MLA) and luminal patency rate (LPR) at six-month follow-up. The radial strength of the scaffold was evaluated using a catheter tensile testing machine. Results QCA results indicated that, at six month, MLD of PLLA/ACP scaffolds was greater than those of PLLA scaffolds (2.47 ± 0.22 mm vs. 2.08 ± 0.25 mm, P < 0.05); LLL of PLLA/ACP scaffolds was less than those of PLLA scaffolds (0.42 ± 0.20 mm vs. 0.75 ± 0.22 mm, P < 0.05). IVUS results showed the SMR and SOR were all significantly less with the PLLA/ACP scaffolds than the PLLA scaffolds (5.84% ± 3.56% vs. 17.72% ± 4.86%, P < 0.05) (6.17% ± 4.63% vs. 17.65% ± 4.29%, P < 0.05). MSA, MLA and LPR of the PLLA/ACP scaffolds were all greater than those of PLLA scaffolds (6.35 ± 0.45 mm vs. 5.35 ± 0.51 mm, P < 0.05) (4.76 ± 0.46 mm vs. 3.77 ± 0.46 mm, P < 0.05) (78.01% ± 12.29% vs. 61.69% ± 9.76%, P < 0.05). Radial strength of PLLA/ACP scaffold at six month was greater than that of PLLA scaffold (76.33 ± 3.14 N vs. 67.67 ± 3.63 N). Conclusion The NFBS had less stent recoil, better lumen patency rate and greater radial strength than PLLA scaffolds. The results suggest the NFBS scaffolds can maintain the structural strength and functional performance, which are effective for up to six months when implanted in porcine coronary arteries.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/0885328218790332DOI Listing
August 2018

Effect of novel bioresorbable scaffold composed of poly-L-lactic acid and amorphous calcium phosphate nanoparticles on inflammation and calcification of surrounding tissues after implantation.

J Mater Sci Mater Med 2018 Jul 17;29(8):112. Epub 2018 Jul 17.

Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China.

To study the effect of novel bioresorbable scaffold composed of poly-L-lactic acid (PLLA) and amorphous calcium phosphate (ACP) nanoparticles on inflammation and calcification of surrounding tissues after implantation. Ninety six PLLA/ACP scaffolds and 96 PLLA scaffolds were randomly implanted in the back muscle tissue of 48 SD rats. At the 1st, 2nd, 4th, and 12th weeks after implantation, the calcium, phosphorus, and alkaline phosphatase levels in the blood serum and the contents of calcium and alkaline phosphatase in the tissue surrounding the scaffolds were measured. Hematoxylin-eosin staining was performed to count the inflammatory cells. Von kossa staining was performed to observe calcification of the surrounding tissue around the scaffold. NF-κB staining was performed by immunohistochemistry to calculate the positive expression index of inflammatory cells. Western blot was used to detect the expression of IL-6 and BMP-2 in the tissues surrounding the scaffolds. At the 1st, 2nd, 4th, and 12th weeks after scaffold implantation, there were no significant difference in the serum concentration of calcium, phosphorus, alkaline phosphatase and in the tissue homogenate concentration of alkaline phosphatase between the two groups (P > 0.05). The level of calcium in tissue homogenates was lower in the PLLA/ACP group than in the PLLA group at 12-week (P < 0.05). The hematoxylin-eosin staining results showed that the inflammatory cell count in the PLLA/ACP group was lower than the PLLA group at 4-week and 12-week (P < 0.05). The results of NF-kB positive expression index showed that the PLLA group was significantly more than the PLLA/ACP group at 4-week and 12-week (P < 0.01). Western blot results showed that IL-6 expression levels in the PLLA/ACP group scaffolds were significantly lower than those in the control group at the 2-week, 4-week and 12-week (P < 0.05). The expression of BMP-2 in the PLLA group was significantly lower than that in the control group at 4-week and 12-week (P < 0.05). The PLLA/ACP composite material has good histocompatibility. The integration of nanoscale ACPs reduces the inflammatory response induced by acidic metabolites of PLLA material and may inhibit tissue calcification by reducing the amount of calcification factors in the body.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-018-6125-6DOI Listing
July 2018

Sirtuin 1 activation and cardioprotective role: Thy eternal summer shall not fade.

Int J Cardiol 2017 11;247:29

Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China. Electronic address:

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijcard.2017.03.140DOI Listing
November 2017

A potential and novel therapeutic approach to ischemic heart diseases: Notch3.

Int J Cardiol 2017 11;246:58

Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China. Electronic address:

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijcard.2017.04.093DOI Listing
November 2017

A potential and lionhearted soldier for atrial fibrillation accompanied with heart failure: Renal denervation.

Int J Cardiol 2017 09;243:281

Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China. Electronic address:

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijcard.2017.04.029DOI Listing
September 2017

12-Month Coronary Angiography, Intravascular Ultrasound and Histology Evaluation of a Novel Fully Bioabsorbable Poly-L-Lactic Acid/Amorphous Calcium Phosphate Scaffolds in Porcine Coronary Arteries.

J Biomed Nanotechnol 2016 Apr;12(4):743-52

Our previous studies have confirmed the superior biocompatibility of the poly-L-lactic acid/amorphous calcium phosphate (PLLA/ACP) scaffolds (PowerScaffold) compared to PLLA scaffolds and their similar 6-month radial strength compared with TAXUS stents. In order to conduct further dynamic observations on the performance of the PowerScaffold after 12-month implantation compared with the TAXUS stents. Twenty PowerScaffold and 20 TAXUS were implanted in porcine coronary arteries. At 12-month follow-up, Quantitative Coronary Angiography showed that the stent reference vessel diameter (3.19 ± 0.25 mm vs. 2.75 ± 0.22 mm, p < 0.05), the mean lumen diameter (3.07 ± 0.22 mm vs. 2.70 ± 0.17 mm, p < 0.05) and the late lumen gain (0.45 ± 0.07 mm vs. 0.06 ± 0.06 mm, p < 0.01) were all significantly greater with the PowerScaffold than the TAXUS. As well, Intravascular Ultrasound showed the stent reference vessel area (7.74 ± 0.48 mm2 vs. 6.96 ± 0.51 mm2, p < 0.05), the mean stent area (7.49 ± 0.46 mm2 vs. 6.53 ± 0.47 mm2, p < 0.05) and the mean lumen area (7.22 ± 0.50 mm2 vs. 6.00 ± 0.48 mm2, p < 0.01) were all significantly greater with the PowerScaffold than the TAXUS. The luminal patency rate of the PowerScaffold significantly increased from 72.45 ± 6.84% at 1 month to 93.54 ± 8.15% at 12 months (p < 0.01) while the TAXUS stents were associated with a non-significant decreasing trend (89.44 ± 8.44% vs. 86.53 ± 8.22%). Pathology indicated the average thickness of the struts degraded by 14.25 ± 3.04 μm at 1 month, 23.39 ± 2.45 μm at 6 months and 35.54 ± 2.20 μm at 12 months. Immunohistochemical examination showed that the expression of inflammatory factors NF-κB gradually decreased from 1-month to 12-month (36.79 ± 4.78 vs. 5.79 ± 2.85, P < 0.01). As the late lumen gain of arteries implanted with the PowerScaffold increases over time with the growth of vessels, it effectively reverse the late vascular negative remodeling observed with the TAXUS stents, providing a better option for lumen restoration treatment in clinical practice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1166/jbn.2016.2241DOI Listing
April 2016

6-Month Follow-Up of a Novel Biodegradable Drug-Eluting Stent Composed of Poly-L-Lactic Acid and Amorphous Calcium Phosphate Nanoparticles in Porcine Coronary Artery.

J Biomed Nanotechnol 2015 Oct;11(10):1819-25

Rationale: We reported previously, in porcine coronary arteries, that the novel biodegradable PowerStent Absorb paclitaxel-eluting stent had improved and sustained structural strength and functional performance at one month post-implantation.

Objective: To report the stent performance at 6-month follow-up.

Methods And Results: Six PowerStent Absorb and six TAXUS stents were randomly implanted in the left anterior descending and right coronary arteries of six Tibet miniature pigs. Quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS) images were obtained at the time of implantation (T0) and at 6 months (T6). Two animals were sacrificed at T6 for histopathological evaluation. At T6, QCA showed that the mean luminal vascular diameter (mLD) between the PowerStent and the TAXUS stents were similar (2.36 ± 0.38 vs. 2.61 ± 0.31, respectively). Based on the IVUS analysis, the mLD and the mean lumen cross-sectional area (mCSA) in the PowerStent-treated arteries were similar between T0 and T6 (mLD: 2.74 ± 0.13 vs. 2.70 ± 0.20 and mCSA: 6.81 ± 0.62 mm2 vs. 6.68 ± 0.94 mm2). Histopathology showed that the PowerStent stents were well apposed to the vessel wall with no recoil, strut fracture and thrombus formation. The stents were fully covered with a layer of endothelial cells.

Conclusions: At six-month post-implantation, the PowerStent Absorb stents maintained their structural strength and functional performance. The development of restenosis was controlled, no stent thrombosis was observed and the stents were fully re-endothelialized. These results suggest the PowerStent Absorb stent is safe and effective for up to 6 months when implanted in porcine coronary arteries.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1166/jbn.2015.2102DOI Listing
October 2015

Hepatocyte growth factor regulates the TGF-β1-induced proliferation, differentiation and secretory function of cardiac fibroblasts.

Int J Mol Med 2014 Aug 16;34(2):381-90. Epub 2014 May 16.

Department of Cardiology, Renmin Hospital of Wuhan University and Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China.

Cardiac fibroblast (CF) proliferation and transformation into myofibroblasts play important roles in cardiac fibrosis during pathological myocardial remodeling. In this study, we demonstrate that hepatocyte growth factor (HGF), an antifibrotic factor in the process of pulmonary, renal and liver fibrosis, is a negative regulator of cardiac fibroblast transformation in response to transforming growth factor‑β1 (TGF‑β1). HGF expression levels were significantly reduced in the CFs following treatment with 5 ng/ml TGF‑β1 for 48 h. The overexpression of HGF suppressed the proliferation, transformation and the secretory function of the CFs following treatment with TGF‑β1, as indicated by the attenuated expression levels of α-smooth muscle actin (α‑SMA) and collagen I and III, whereas the knockdown of HGF had the opposite effect. Mechanistically, we identified that the phosphorylation of c‑Met, Akt and total protein of TGIF was significantly inhibited by the knockdown of HGF, but was significantly enhanced by HGF overexpression. Collectively, these results indicate that HGF activates the c‑Met‑Akt‑TGIF signaling pathway, inhibiting CF proliferation and transformation in response to TGF‑β1 stimulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijmm.2014.1782DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094591PMC
August 2014

Novel biodegradable drug-eluting stent composed of poly-L-lactic acid and amorphous calcium phosphate nanoparticles demonstrates improved structural and functional performance for coronary artery disease.

J Biomed Nanotechnol 2014 Jul;10(7):1194-204

Bioabsorbable drug-eluting stents (BDES) offer multiple advantages over a permanent bare metal stent (BMS) for coronary artery disease (CAD). However, current BDES remains two major issues: inferior radial strength and biocompatibility. PowerStent Absorb BDES, fabricated by co-formulating amorphous calcium phosphate (ACP) nanoparticles with poly-L-lactic acid (PLLA/ACP, 98/2, w/w) and 2% Paclitaxel (PAX, w/w) was designed to address these issues. Two cohorts of 6 miniature pigs were each implanted with PLLA/PAX (control, 2% PAX, w/w) or PowerStent Absorb BDES. After 1 month in-vivo study, histological analyses showed significantly reduced restenosis in the PowerStent Absorb BDES cohort relative to the control cohort (44.49 +/- 410.49% vs. 64.47 +/- 16.2%, p < 0.05). Stent recoil (21.57 +/- 5.36% vs. 33.81 +/- 11.49, P < 0.05) and inflammation (3.01 +/- 0.62 vs. 4.07 +/- 0.86, P < 0.01) were also obviously decreased. From in-vitro studies, PLLA/ACP/PAX stent tube maintained significantly greater radial strength than control group during 6 months in-vitro degradation (PLLA/ACP/PAX vs. PLLA/PAX: before hydrolysis: 82.4 +/- 1.9 N vs.74.8 +/- 3.8 N; 6 weeks: 73.9 +/- 1.8 N vs. 68.0 +/- 5.3 N; 3 months: 73.5 +/- 3.4 N vs.67.2 +/- 3.8 N; 6 months: 56.3 +/- 8.1 N vs. 57.5 +/- 4.9 N). Moreover, ACP facilitated the hydrolytic degradation of PLLA compared with control one (62.6% vs. 49.8%), meanwhile, it also increased the crystallinity of PLLA (58.4% vs. 50.7%) at 6 months. From SEM observations, ACP created nanometer pores that enlarge gradually to a micrometer scale as degradation proceeds. The changes of the porosity may result in greatly promoting re-endothelialization.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1166/jbn.2014.1868DOI Listing
July 2014

Improved biocompatibility of poly(lactic-co-glycolic acid) orv and poly-L-lactic acid blended with nanoparticulate amorphous calcium phosphate in vascular stent applications.

J Biomed Nanotechnol 2014 Jun;10(6):900-10

Biodegradable polymers used as vascular stent coatings and stent platforms encounter a major challenge: biocompatibility in vivo, which plays an important role in in-stent restenosis (ISR). Co-formulating amorphous calcium phosphate (ACP) into poly(lactic-co-glycolic acid) (PLGA) or poly-L-lactic acid (PLLA) was investigated to address the issue. For stent coating applications, metal stents were coated with polyethylene-co-vinyl acetate/poly-n-butyl methacrylate (PEVA/PBMA), PLGA or PLGA/ACP composites, and implanted into rat aortas for one and three months. Comparing with both PEVA/PBMA and PLGA groups after one month, the results showed that stents coated with PLGA/ACP had significantly reduced restenosis (PLGA/ACP vs. PEVA/PBMA vs. PLGA: 21.24 +/- 2.59% vs. 27.54 +/- 1.19% vs. 32.12 +/- 3.93%, P < 0.05), reduced inflammation (1.25 +/- 0.35 vs. 1.77 +/- 0.38 vs. 2.30 +/- 0.21, P < 0.05) and increased speed of re-endothelialization (1.78 +/- 0.46 vs. 1.17 +/- 0.18 vs. 1.20 +/- 0.18, P < 0.05). After three months, the PLGA/ACP group still displayed lower inflammation score (1.33 +/- 0.33 vs. 2.27 +/- 0.55, P < 0.05) and higher endothelial scores (2.33 +/- 0.33 vs. 1.20 +/- 0.18, P < 0.05) as compared with the PEVA/PBMA group. Moreover, for stent platform applications, PLLA/ACP stent tube significantly reduced the inflammatory cells infiltration in the vessel walls of rabbit iliac arteries relative to their PLLA cohort (NF-kappaB-positive cells: 23.31 +/- 2.33/mm2 vs. 9.34 +/- 1.35/mm2, P < 0.05). No systemic biochemical or pathological evidence of toxicity was found in either PLGA/ACP or PLLA/ACP. The co-formulation of ACP into PLGA and PLLA resulted in improved biocompatibility without systemic toxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1166/jbn.2014.1856DOI Listing
June 2014