Publications by authors named "Gabriel Ozorowski"

71 Publications

Enhancing glycan occupancy of soluble HIV-1 envelope trimers to mimic the native viral spike.

Cell Rep 2021 Apr;35(1):108933

Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, USA. Electronic address:

Artificial glycan holes on recombinant Env-based vaccines occur when a potential N-linked glycosylation site (PNGS) is under-occupied, but not on their viral counterparts. Native-like SOSIP trimers, including clinical candidates, contain such holes in the glycan shield that induce strain-specific neutralizing antibodies (NAbs) or non-NAbs. To eliminate glycan holes and mimic the glycosylation of native BG505 Env, we replace all 12 NxS sequons on BG505 SOSIP with NxT. All PNGS, except N133 and N160, are nearly fully occupied. Occupancy of the N133 site is increased by changing N133 to NxS, whereas occupancy of the N160 site is restored by reverting the nearby N156 sequon to NxS. Hence, PNGS in close proximity, such as in the N133-N137 and N156-N160 pairs, affect each other's occupancy. We further apply this approach to improve the occupancy of several Env strains. Increasing glycan occupancy should reduce off-target immune responses to vaccine antigens.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2021.108933DOI Listing
April 2021

Elicitation of potent serum neutralizing antibody responses in rabbits by immunization with an HIV-1 clade C trimeric Env derived from an Indian elite neutralizer.

PLoS Pathog 2021 Apr 7;17(4):e1008977. Epub 2021 Apr 7.

Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, India.

Evaluating the structure-function relationship of viral envelope (Env) evolution and the development of broadly cross-neutralizing antibodies (bnAbs) in natural infection can inform rational immunogen design. In the present study, we examined the magnitude and specificity of autologous neutralizing antibodies induced in rabbits by a novel HIV-1 clade C Env protein (1PGE-THIVC) vis-à-vis those developed in an elite neutralizer from whom the env sequence was obtained that was used to prepare the soluble Env protein. The novel 1PGE-THIVC Env trimer displayed a native like pre-fusion closed conformation in solution as determined by small angle X-ray scattering (SAXS) and negative stain electron microscopy (EM). This closed spike conformation of 1PGE-THIVC Env trimers was correlated with weak or undetectable binding of non-neutralizing monoclonal antibodies (mAbs) compared to neutralizing mAbs. Furthermore, 1PGE-THIVC SOSIP induced potent neutralizing antibodies in rabbits to autologous virus variants. The autologous neutralizing antibody specificity induced in rabbits by 1PGE-THIVC was mapped to the C3/V4 region (T362/P401) of viral Env. This observation agreed with electron microscopy polyclonal epitope mapping (EMPEM) of the Env trimer complexed with IgG Fab prepared from the immunized rabbit sera. Our study demonstrated neutralization of sequence matched and unmatched autologous viruses by serum antibodies induced in rabbits by 1PGE-THIVC and also highlighted a comparable specificity for the 1PGE-THIVC SOSIP trimer with that seen with polyclonal antibodies elicited in the elite neutralizer by negative-stain electron microscopy polyclonal epitope (ns-EMPEM) mapping.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1008977DOI Listing
April 2021

Isolation and Characterization of Cross-Neutralizing Coronavirus Antibodies from COVID-19+ Subjects.

bioRxiv 2021 Mar 24. Epub 2021 Mar 24.

SARS-CoV-2 is one of three coronaviruses that have crossed the animal-to-human barrier in the past two decades. The development of a universal human coronavirus vaccine could prevent future pandemics. We characterized 198 antibodies isolated from four COVID19+ subjects and identified 14 SARS-CoV-2 neutralizing antibodies. One targeted the NTD, one recognized an epitope in S2 and twelve bound the RBD. Three anti-RBD neutralizing antibodies cross-neutralized SARS-CoV-1 by effectively blocking binding of both the SARS-CoV-1 and SARS-CoV-2 RBDs to the ACE2 receptor. Using the K18-hACE transgenic mouse model, we demonstrate that the neutralization potency rather than the antibody epitope specificity regulates the protective potential of anti-SARS-CoV-2 antibodies. The anti-S2 antibody also neutralized SARS-CoV-1 and all four cross-neutralizing antibodies neutralized the B.1.351 mutant strain. Thus, our study reveals that epitopes in S2 can serve as blueprints for the design of immunogens capable of eliciting cross-neutralizing coronavirus antibodies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.03.23.436684DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010719PMC
March 2021

Extremely potent human monoclonal antibodies from COVID-19 convalescent patients.

Cell 2021 04 23;184(7):1821-1835.e16. Epub 2021 Feb 23.

Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy; Faculty of Medicine, Imperial College, London, UK. Electronic address:

Human monoclonal antibodies are safe, preventive, and therapeutic tools that can be rapidly developed to help restore the massive health and economic disruption caused by the coronavirus disease 2019 (COVID-19) pandemic. By single-cell sorting 4,277 SARS-CoV-2 spike protein-specific memory B cells from 14 COVID-19 survivors, 453 neutralizing antibodies were identified. The most potent neutralizing antibodies recognized the spike protein receptor-binding domain, followed in potency by antibodies that recognize the S1 domain, the spike protein trimer, and the S2 subunit. Only 1.4% of them neutralized the authentic virus with a potency of 1-10 ng/mL. The most potent monoclonal antibody, engineered to reduce the risk of antibody-dependent enhancement and prolong half-life, neutralized the authentic wild-type virus and emerging variants containing D614G, E484K, and N501Y substitutions. Prophylactic and therapeutic efficacy in the hamster model was observed at 0.25 and 4 mg/kg respectively in absence of Fc functions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2021.02.035DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901298PMC
April 2021

Immunofocusing and enhancing autologous Tier-2 HIV-1 neutralization by displaying Env trimers on two-component protein nanoparticles.

NPJ Vaccines 2021 Feb 9;6(1):24. Epub 2021 Feb 9.

Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands.

The HIV-1 envelope glycoprotein trimer is poorly immunogenic because it is covered by a dense glycan shield. As a result, recombinant Env glycoproteins generally elicit inadequate antibody levels that neutralize clinically relevant, neutralization-resistant (Tier-2) HIV-1 strains. Multivalent antigen presentation on nanoparticles is an established strategy to increase vaccine-driven immune responses. However, due to nanoparticle instability in vivo, the display of non-native Env structures, and the inaccessibility of many neutralizing antibody (NAb) epitopes, the effects of nanoparticle display are generally modest for Env trimers. Here, we generate two-component self-assembling protein nanoparticles presenting twenty SOSIP trimers of the clade C Tier-2 genotype 16055. We show in a rabbit immunization study that these nanoparticles induce 60-fold higher autologous Tier-2 NAb titers than the corresponding SOSIP trimers. Epitope mapping studies reveal that the presentation of 16055 SOSIP trimers on these nanoparticle focuses antibody responses to an immunodominant apical epitope. Thus, these nanoparticles are a promising platform to improve the immunogenicity of Env trimers with apex-proximate NAb epitopes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41541-021-00285-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7873233PMC
February 2021

A Strain-Specific Inhibitor of Receptor-Bound HIV-1 Targets a Pocket near the Fusion Peptide.

Cell Rep 2020 Nov;33(8):108428

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Electronic address:

Disruption of viral fusion represents a viable, albeit under-explored, target for HIV therapeutics. Here, while studying the receptor-bound envelope glycoprotein conformation by cryoelectron microscopy (cryo-EM), we identify a pocket near the base of the trimer containing a bound detergent molecule and perform in silico drug screening by using a library of drug-like and commercially available molecules. After down-selection, we solve cryo-EM structures that validate the binding of two small molecule hits in very similar manners to the predicted binding poses, including interactions with aromatic residues within the fusion peptide. One of the molecules demonstrates low micromolar inhibition of the autologous virus by using a very rare phenylalanine in the fusion peptide and stabilizing the surrounding region. This work demonstrates that small molecules can target the fusion process, providing an additional target for anti-HIV therapeutics, and highlights the need to explore how fusion peptide sequence variations affect receptor-mediated conformational states across diverse HIV strains.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2020.108428DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7701285PMC
November 2020

Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate.

Science 2020 11 20;370(6520):1089-1094. Epub 2020 Oct 20.

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.

Vaccine efforts to combat the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the current coronavirus disease 2019 (COVID-19) pandemic, are focused on SARS-CoV-2 spike glycoprotein, the primary target for neutralizing antibodies. We performed cryo-election microscopy and site-specific glycan analysis of one of the leading subunit vaccine candidates from Novavax, which is based on a full-length spike protein formulated in polysorbate 80 detergent. Our studies reveal a stable prefusion conformation of the spike immunogen with slight differences in the S1 subunit compared with published spike ectodomain structures. We also observed interactions between the spike trimers, allowing formation of higher-order spike complexes. This study confirms the structural integrity of the full-length spike protein immunogen and provides a basis for interpreting immune responses to this multivalent nanoparticle immunogen.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.abe1502DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7857404PMC
November 2020

Neutralizing Antibody Responses Induced by HIV-1 Envelope Glycoprotein SOSIP Trimers Derived from Elite Neutralizers.

J Virol 2020 11 23;94(24). Epub 2020 Nov 23.

Department of Medical Microbiology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands

The induction of broadly neutralizing antibodies (bNAbs) is a major goal in vaccine research. HIV-1-infected individuals that develop exceptionally strong bNAb responses, termed elite neutralizers, can inform vaccine design by providing blueprints for the induction of similar bNAb responses. We describe a new recombinant native-like envelope glycoprotein (Env) SOSIP trimer, termed AMC009, based on the viral founder sequences of an elite neutralizer. The subtype B AMC009 SOSIP protein formed stable native-like trimers that displayed multiple bNAb epitopes. Overall, its structure at 4.3-Å resolution was similar to that of BG505 SOSIP.664. The AMC009 trimer resembled one from a second elite neutralizer, AMC011, in having a dense and complete glycan shield. When tested as immunogens in rabbits, the AMC009 trimers did not induce autologous neutralizing antibody (NAb) responses efficiently while the AMC011 trimers did so very weakly, outcomes that may reflect the completeness of their glycan shields. The AMC011 trimer induced antibodies that occasionally cross-neutralized heterologous tier 2 viruses, sometimes at high titer. Cross-neutralizing antibodies were more frequently elicited by a trivalent combination of AMC008, AMC009, and AMC011 trimers, all derived from subtype B viruses. Each of these three individual trimers could deplete the NAb activity from the rabbit sera. Mapping the polyclonal sera by electron microscopy revealed that antibodies of multiple specificities could bind to sites on both autologous and heterologous trimers. These results advance our understanding of how to use Env trimers in multivalent vaccination regimens and the immunogenicity of trimers derived from elite neutralizers. Elite neutralizers, i.e., individuals who developed unusually broad and potent neutralizing antibody responses, might serve as blueprints for HIV-1 vaccine design. Here, we studied the immunogenicity of native-like recombinant envelope glycoprotein (Env) trimers based on viral sequences from elite neutralizers. While immunization with single trimers from elite neutralization did not recapitulate the breadth and potency of neutralization observed in these infected individuals, a combination of three subtype B Env trimers from elite neutralizers resulted in some neutralization breadth within subtype B viruses. These results should guide future efforts to design vaccines to induce broadly neutralizing antibodies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.01214-20DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925178PMC
November 2020

Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates.

PLoS Pathog 2020 08 31;16(8):e1008753. Epub 2020 Aug 31.

Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.

The induction of broad and potent immunity by vaccines is the key focus of research efforts aimed at protecting against HIV-1 infection. Soluble native-like HIV-1 envelope glycoproteins have shown promise as vaccine candidates as they can induce potent autologous neutralizing responses in rabbits and non-human primates. In this study, monoclonal antibodies were isolated and characterized from rhesus macaques immunized with the BG505 SOSIP.664 trimer to better understand vaccine-induced antibody responses. Our studies reveal a diverse landscape of antibodies recognizing immunodominant strain-specific epitopes and non-neutralizing neo-epitopes. Additionally, we isolated a subset of mAbs against an epitope cluster at the gp120-gp41 interface that recognize the highly conserved fusion peptide and the glycan at position 88 and have characteristics akin to several human-derived broadly neutralizing antibodies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1008753DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7485981PMC
August 2020

Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate.

bioRxiv 2020 Aug 6. Epub 2020 Aug 6.

Dept. of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.

Vaccine efforts against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the current COVID-19 pandemic are focused on SARS-CoV-2 spike glycoprotein, the primary target for neutralizing antibodies. Here, we performed cryo-EM and site-specific glycan analysis of one of the leading subunit vaccine candidates from Novavax based on a full-length spike protein formulated in polysorbate 80 (PS 80) detergent. Our studies reveal a stable prefusion conformation of the spike immunogen with slight differences in the S1 subunit compared to published spike ectodomain structures. Interestingly, we also observed novel interactions between the spike trimers allowing formation of higher order spike complexes. This study confirms the structural integrity of the full-length spike protein immunogen and provides a basis for interpreting immune responses to this multivalent nanoparticle immunogen.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2020.08.06.234674DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7418715PMC
August 2020

Harnessing Activin A Adjuvanticity to Promote Antibody Responses to BG505 HIV Envelope Trimers.

Front Immunol 2020 16;11:1213. Epub 2020 Jun 16.

Scripps Center for HIV/AIDS Vaccine Immunogen Development (CHAVD), The Scripps Research Institute, La Jolla, CA, United States.

T follicular helper (T) cells are powerful regulators of affinity matured long-lived plasma cells. Eliciting protective, long-lasting antibody responses to achieve persistent immunity is the goal of most successful vaccines. Thus, there is potential in manipulating T cell responses. Herein, we describe an HIV vaccine development approach exploiting the cytokine activin A to improve antibody responses against recombinant HIV Envelope (Env) trimers in non-human primates. Administration of activin A improved the magnitude of Env-specific antibodies over time and promoted a significant increase in Env-specific plasma cells in the bone marrow. The boost in antibody responses was associated with reduced frequencies of T follicular regulatory (T) cells and increased germinal center T follicular helper (GC-T) to T cell ratios. Overall, these findings suggest that adjuvants inducing activin A production could potentially be incorporated in future rational design vaccine strategies aimed at improving germinal centers, long-lived plasma cells, and sustained antibody responses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2020.01213DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308430PMC
April 2021

HIV envelope trimer-elicited autologous neutralizing antibodies bind a region overlapping the N332 glycan supersite.

Sci Adv 2020 Jun 5;6(23):eaba0512. Epub 2020 Jun 5.

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.

To date, immunization studies of rabbits with the BG505 SOSIP.664 HIV envelope glycoprotein trimers have revealed the 241/289 glycan hole as the dominant neutralizing antibody epitope. Here, we isolated monoclonal antibodies from a rabbit that did not exhibit glycan hole-dependent autologous serum neutralization. The antibodies did not compete with a previously isolated glycan hole-specific antibody but did compete with N332 glycan supersite broadly neutralizing antibodies. A 3.5-Å cryoEM structure of one of the antibodies in complex with the BG505 SOSIP.v5.2 trimer demonstrated that while the epitope recognized overlapped the N332 glycan supersite by contacting the GDIR motif at the base of V3, primary contacts were located in the variable V1 loop. These data suggest that strain-specific responses to V1 may interfere with broadly neutralizing responses to the N332 glycan supersite and vaccine immunogens may require engineering to minimize these off-target responses or steer them toward a more desirable pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.aba0512DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274786PMC
June 2020

Env Exceptionalism: Why Are HIV-1 Env Glycoproteins Atypical Immunogens?

Cell Host Microbe 2020 04;27(4):507-518

Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA. Electronic address:

Recombinant HIV-1 envelope (Env) glycoproteins of ever-increasing sophistication have been evaluated as vaccine candidates for over 30 years. Structurally defined mimics of native trimeric Env glycoproteins (e.g., SOSIP trimers) present multiple epitopes for broadly neutralizing antibodies (bNAbs) and their germline precursors, but elicitation of bNAbs remains elusive. Here, we argue that the interactions between Env and the immune system render it exceptional among viral vaccine antigens and hinder its immunogenicity in absolute and comparative terms. In other words, Env binds to CD4 on key immune cells and transduces signals that can compromise their function. Moreover, the extensive array of oligomannose glycans on Env shields peptidic B cell epitopes, impedes the presentation of T helper cell epitopes, and attracts mannose binding proteins, which could affect the antibody response. We suggest lines of research for assessing how to overcome obstacles that the exceptional features of Env impose on the creation of a successful HIV-1 vaccine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chom.2020.03.018DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7187920PMC
April 2020

Autologous Antibody Responses to an HIV Envelope Glycan Hole Are Not Easily Broadened in Rabbits.

J Virol 2020 03 17;94(7). Epub 2020 Mar 17.

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA

Extensive studies with subtype A BG505-derived HIV envelope glycoprotein (Env) immunogens have revealed that the dominant autologous neutralizing epitope in rabbits is located in an exposed region of the heavily glycosylated trimer that lacks potential N-linked glycosylation sites at positions 230, 241, and 289. The Env derived from B41, a subtype B virus, shares a glycan hole centered on positions 230 and 289. To test whether broader neutralization to the common glycan hole can be achieved, we immunized rabbits with B41 SOSIP (gp120-gp41 disulfide [SOS] with an isoleucine-to-proline mutation [IP] in gp41) alone, as well as B41 and BG505 coimmunization. We isolated autologous neutralizing antibodies (nAbs) and described their structure in complex with the B41 Env. Our data suggest that distinct autologous nAb lineages are induced by BG505 and B41 immunogens, even when both were administered together. In contrast to previously described BG505 glycan hole antibodies, the B41-specific nAbs accommodate the >97% conserved N241 glycan, which is present in B41. Single-particle cryo-electron microscopy studies confirmed that B41- and BG505-specific nAbs bind to overlapping glycan hole epitopes. We then used our high-resolution data to guide mutations in the BG505 glycan hole epitope in an attempt to broaden the reactivity of a B41-specific nAb, but we recovered only partial binding. Our data demonstrate that the lack of cross-reactivity in glycan hole antibodies is due to amino acid differences within the epitope, and our attempts to rationally design cross-reactive trimers resulted in only limited success. Thus, even for the immunodominant glycan hole shared between BG505 and B41, the prospect of designing prime-boost immunogens remains difficult. A glycan hole is one of the most dominant autologous neutralizing epitopes targeted on BG505 and B41 SOSIP trimer-immunized rabbits. Our high-resolution cryo-electron microscopy (cryoEM) studies of B41 in complex with a B41-specific antibody complex elucidate the molecular basis of this strain-specific glycan hole response. We conclude that even for the immunodominant glycan hole shared between BG505 and B41, the prospect of designing prime-boost immunogens remains difficult.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.01861-19DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081899PMC
March 2020

Neutralizing Antibody Induction by HIV-1 Envelope Glycoprotein SOSIP Trimers on Iron Oxide Nanoparticles May Be Impaired by Mannose Binding Lectin.

J Virol 2020 02 28;94(6). Epub 2020 Feb 28.

Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA

We covalently attached human immunodeficiency virus type 1 (HIV-1) Env SOSIP trimers to iron oxide nanoparticles (IO-NPs) to create a particulate immunogen for neutralizing antibody (NAb) induction. The attached trimers, ∼20 per particle, retained native-like antigenicity, judged by reactivity with NAbs and non-NAbs. Bivalent (BG505 and B41) trimer IO-NPs were made, as were IO-NPs displaying B41 trimers carrying a PADRE T-cell helper epitope (TCHE). We immunized mice with B41 soluble or IO-NP trimers after PADRE peptide priming. After two immunizations, IO-NP presentation and the TCHE tag independently and substantially increased anti-trimer antibody responses, but titer differences waned after two further doses. Notable and unexpected findings were that autologous NAbs to the N289 glycan hole epitope were consistently induced in mice given soluble but not IO-NP trimers. Various recombinant mannose binding lectins (MBLs) and MBLs in sera of both murine and human origin bound to soluble and IO-NP trimers. MBL binding occluded the autologous NAb epitope on the B41 IO-NP trimers, which may contribute to its poor immunogenicity. The exposure of a subset of broadly active NAb epitopes was also impaired by MBL binding, which could have substantial implications for the utility of trimer-bearing nanoparticles in general and perhaps also for soluble Env proteins. Recombinant trimeric SOSIP proteins are vaccine components intended to induce neutralizing antibodies (NAbs) that prevent cells from infection by human immunodeficiency virus type 1 (HIV-1). A way to increase the strength of antibody responses to these proteins is to present them on the surface of nanoparticles (NPs). We chemically attached about 20 SOSIP trimers to NPs made of iron oxide (IO). The resulting IO-NP trimers had appropriate properties when we studied them in the laboratory but, unexpectedly, were less able to induce NAbs than nonattached trimers when used to immunize mice. We found that mannose binding lectins, proteins naturally present in the serum of mice and other animals, bound strongly to the soluble and IO-NP trimers, blocking access to antibody epitopes in a way that may impede the development of NAb responses. These findings should influence how trimer-bearing NPs of various designs are made and used.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.01883-19DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7158715PMC
February 2020

Vaccination with Glycan-Modified HIV NFL Envelope Trimer-Liposomes Elicits Broadly Neutralizing Antibodies to Multiple Sites of Vulnerability.

Immunity 2019 11 12;51(5):915-929.e7. Epub 2019 Nov 12.

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center at The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Electronic address:

The elicitation of broadly neutralizing antibodies (bNAbs) against the HIV-1 envelope glycoprotein (Env) trimer remains a major vaccine challenge. Most cross-conserved protein determinants are occluded by self-N-glycan shielding, limiting B cell recognition of the underlying polypeptide surface. The exceptions to the contiguous glycan shield include the conserved receptor CD4 binding site (CD4bs) and glycoprotein (gp)41 elements proximal to the furin cleavage site. Accordingly, we performed heterologous trimer-liposome prime:boosting in rabbits to drive B cells specific for cross-conserved sites. To preferentially expose the CD4bs to B cells, we eliminated proximal N-glycans while maintaining the native-like state of the cleavage-independent NFL trimers, followed by gradual N-glycan restoration coupled with heterologous boosting. This approach successfully elicited CD4bs-directed, cross-neutralizing Abs, including one targeting a unique glycan-protein epitope and a bNAb (87% breadth) directed to the gp120:gp41 interface, both resolved by high-resolution cryoelectron microscopy. This study provides proof-of-principle immunogenicity toward eliciting bNAbs by vaccination.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.immuni.2019.10.008DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891888PMC
November 2019

A generalized HIV vaccine design strategy for priming of broadly neutralizing antibody responses.

Science 2019 12 31;366(6470). Epub 2019 Oct 31.

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.

Vaccine induction of broadly neutralizing antibodies (bnAbs) to HIV remains a major challenge. Germline-targeting immunogens hold promise for initiating the induction of certain bnAb classes; yet for most bnAbs, a strong dependence on antibody heavy chain complementarity-determining region 3 (HCDR3) is a major barrier. Exploiting ultradeep human antibody sequencing data, we identified a diverse set of potential antibody precursors for a bnAb with dominant HCDR3 contacts. We then developed HIV envelope trimer-based immunogens that primed responses from rare bnAb-precursor B cells in a mouse model and bound a range of potential bnAb-precursor human naïve B cells in ex vivo screens. Our repertoire-guided germline-targeting approach provides a framework for priming the induction of many HIV bnAbs and could be applied to most HCDR3-dominant antibodies from other pathogens.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aax4380DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7092357PMC
December 2019

Conformational Plasticity in the HIV-1 Fusion Peptide Facilitates Recognition by Broadly Neutralizing Antibodies.

Cell Host Microbe 2019 06;25(6):873-883.e5

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Electronic address:

The fusion peptide (FP) of HIV-1 envelope glycoprotein (Env) is essential for mediating viral entry. Detection of broadly neutralizing antibodies (bnAbs) that interact with the FP has revealed it as a site of vulnerability. We delineate X-ray and cryo-electron microscopy (cryo-EM) structures of bnAb ACS202, from an HIV-infected elite neutralizer, with an FP and with a soluble Env trimer (AMC011 SOSIP.v4.2) derived from the same patient. We show that ACS202 CDRH3 forms a "β strand" interaction with the exposed hydrophobic FP and recognizes a continuous region of gp120, including a conserved N-linked glycan at N88. A cryo-EM structure of another previously identified bnAb VRC34.01 with AMC011 SOSIP.v4.2 shows that it also penetrates through glycans to target the FP. We further demonstrate that the FP can twist and present different conformations for recognition by bnAbs, which enables approach to Env from diverse angles. The variable recognition of FP by bnAbs thus provides insights for vaccine design.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chom.2019.04.011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6579543PMC
June 2019

Structure and immunogenicity of a stabilized HIV-1 envelope trimer based on a group-M consensus sequence.

Nat Commun 2019 05 29;10(1):2355. Epub 2019 May 29.

Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105AZ, The Netherlands.

Stabilized HIV-1 envelope glycoproteins (Env) that resemble the native Env are utilized in vaccination strategies aimed at inducing broadly neutralizing antibodies (bNAbs). To limit the exposure of rare isolate-specific antigenic residues/determinants we generated a SOSIP trimer based on a consensus sequence of all HIV-1 group M isolates (ConM). The ConM trimer displays the epitopes of most known bNAbs and several germline bNAb precursors. The crystal structure of the ConM trimer at 3.9 Å resolution resembles that of the native Env trimer and its antigenic surface displays few rare residues. The ConM trimer elicits strong NAb responses against the autologous virus in rabbits and macaques that are significantly enhanced when it is presented on ferritin nanoparticles. The dominant NAb specificity is directed against an epitope at or close to the trimer apex. Immunogens based on consensus sequences might have utility in engineering vaccines against HIV-1 and other viruses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-10262-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6541627PMC
May 2019

Field-Based Affinity Optimization of a Novel Azabicyclohexane Scaffold HIV-1 Entry Inhibitor.

Molecules 2019 Apr 22;24(8). Epub 2019 Apr 22.

Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Rooms 10307, 10309, and 10315, 245 North 15th Street, Philadelphia, PA 19102, USA.

Small-molecule HIV-1 entry inhibitors are an extremely attractive therapeutic modality. We have previously demonstrated that the entry inhibitor class can be optimized by using computational means to identify and extend the chemotypes available. Here we demonstrate unique and differential effects of previously published antiviral compounds on the gross structure of the HIV-1 Env complex, with an azabicyclohexane scaffolded inhibitor having a positive effect on glycoprotein thermostability. We demonstrate that modification of the methyltriazole-azaindole headgroup of these entry inhibitors directly effects the potency of the compounds, and substitution of the methyltriazole with an amine-oxadiazole increases the affinity of the compound 1000-fold over parental by improving the on-rate kinetic parameter. These findings support the continuing exploration of compounds that shift the conformational equilibrium of HIV-1 Env as a novel strategy to improve future inhibitor and vaccine design efforts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules24081581DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514670PMC
April 2019

The HIV-1 Envelope Glycoprotein C3/V4 Region Defines a Prevalent Neutralization Epitope following Immunization.

Cell Rep 2019 04;27(2):586-598.e6

Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center of Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA. Electronic address:

Despite recent progress in engineering native trimeric HIV-1 envelope glycoprotein (Env) mimics as vaccine candidates, Env trimers often induce vaccine-matched neutralizing antibody (NAb) responses. Understanding the specificities of autologous NAb responses and the underlying molecular mechanisms restricting the neutralization breadth is therefore informative to improve vaccine efficacy. Here, we delineate the response specificity by single B cell sorting and serum analysis of guinea pigs immunized with BG505 SOSIP.664 Env trimers. Our results reveal a prominent immune target containing both conserved and strain-specific residues in the C3/V4 region of Env in trimer-vaccinated animals. The defined NAb response shares a high degree of similarity with the early NAb response developed by a naturally infected infant from whom the HIV virus strain BG505 was isolated and later developed a broadly NAb response. Our study describes strain-specific responses and their possible evolution pathways, thereby highlighting the potential to broaden NAb responses by immunogen re-design.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2019.03.039DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458978PMC
April 2019

Developability Assessment of Physicochemical Properties and Stability Profiles of HIV-1 BG505 SOSIP.664 and BG505 SOSIP.v4.1-GT1.1 gp140 Envelope Glycoprotein Trimers as Candidate Vaccine Antigens.

J Pharm Sci 2019 07 15;108(7):2264-2277. Epub 2019 Feb 15.

Product Development Center, International AIDS Vaccine Initiative, New York, New York 10004. Electronic address:

The induction of broadly neutralizing antibodies (bNAbs) is a major goal in the development of an effective vaccine against HIV-1. A soluble, trimeric, germline (gI) bNAb-targeting variant of the HIV-1 envelope glycoprotein (termed BG505 SOSIP.v4.1-GT1.1 gp140, abbreviated to GT1.1) has recently been developed. Here, we have compared this new immunogen with the parental trimer from which it was derived, BG505 SOSIP.664 gp140. We used a comprehensive suite of biochemical and biophysical methods to determine physicochemical similarities and differences between the 2 trimers, and thereby assessed whether additional formulation development efforts were needed for the GT1.1 vaccine candidate. The overall higher order structure and oligomeric states of the 2 vaccine antigens were quite similar, as were their thermal, chemical, and colloidal stability profiles, as evaluated during accelerated stability studies. Overall, we conclude that the primary sequence changes made to create the gl bNAb-targeting GT1.1 trimer did not detrimentally affect its physicochemical properties or stability profiles from a pharmaceutical perspective. This developability assessment of the BG505 GT1.1 vaccine antigen supports using the formulation and storage conditions previously identified for the parental SOSIP.664 trimer and enables the development of GT1.1 for phase I clinical studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2019.01.033DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6595180PMC
July 2019

Closing and Opening Holes in the Glycan Shield of HIV-1 Envelope Glycoprotein SOSIP Trimers Can Redirect the Neutralizing Antibody Response to the Newly Unmasked Epitopes.

J Virol 2019 02 5;93(4). Epub 2019 Feb 5.

Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA

In HIV-1 vaccine research, native-like, soluble envelope glycoprotein SOSIP trimers are widely used for immunizing animals. The epitopes of autologous neutralizing antibodies (NAbs) induced by the BG505 and B41 SOSIP trimers in rabbits and macaques have been mapped to a few holes in the glycan shields that cover most of the protein surfaces. For BG505 trimers, the dominant autologous NAb epitope in rabbits involves residues that line a cavity caused by the absence of a glycan at residue 241. Here, we blocked this epitope in BG505 SOSIPv4.1 trimer immunogens by knocking in an N-linked glycan at residue 241. We then opened holes elsewhere on the trimer by knocking out single N-linked glycans at residues 197, 234, 276, 332, and 355 and found that NAb responses induced by the 241-glycan-bearing BG505 trimers were frequently redirected to the newly opened sites. The strongest evidence for redirection of the NAb response to neoepitopes, through the opening and closing of glycan holes, was obtained from trimer immunogen groups with the highest occupancy of the N241 site. We also attempted to knock in the N289-glycan to block the sole autologous NAb epitope on the B41 SOSIP.v4.1 trimer. Although a retrospective analysis showed that the new N289-glycan site was substantially underoccupied, we found some evidence for redirection of the NAb response to a neoepitope when this site was knocked in and the N356-glycan site knocked out. In neither study, however, was redirection associated with increased neutralization of heterologous tier 2 viruses. Engineered SOSIP trimers mimic envelope-glycoprotein spikes, which stud the surface of HIV-1 particles and mediate viral entry into cells. When used for immunizing test animals, they elicit antibodies that neutralize resistant sequence-matched HIV-1 isolates. These neutralizing antibodies recognize epitopes in holes in the glycan shield that covers the trimer. Here, we added glycans to block the most immunogenic neutralization epitopes on BG505 and B41 SOSIP trimers. In addition, we removed selected other glycans to open new holes that might expose new immunogenic epitopes. We immunized rabbits with the various glycan-modified trimers and then dissected the specificities of the antibody responses. Thus, in principle, the antibody response might be diverted from one site to a more cross-reactive one, which would help in the induction of broadly neutralizing antibodies by HIV-1 vaccines based on envelope glycoproteins.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.01656-18DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363999PMC
February 2019

HIV-1 vaccine design through minimizing envelope metastability.

Sci Adv 2018 11 21;4(11):eaau6769. Epub 2018 Nov 21.

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.

Overcoming envelope metastability is crucial to trimer-based HIV-1 vaccine design. Here, we present a coherent vaccine strategy by minimizing metastability. For 10 strains across five clades, we demonstrate that the gp41 ectodomain (gp41) is the main source of envelope metastability by replacing wild-type gp41 with BG505 gp41 of the uncleaved prefusion-optimized (UFO) design. These gp41-swapped trimers can be produced in CHO cells with high yield and high purity. The crystal structure of a gp41-swapped trimer elucidates how a neutralization-resistant tier 3 virus evades antibody recognition of the V2 apex. UFO trimers of transmitted/founder viruses and UFO trimers containing a consensus-based ancestral gp41 suggest an evolutionary root of metastability. The gp41-stabilized trimers can be readily displayed on 24- and 60-meric nanoparticles, with incorporation of additional T cell help illustrated for a hyperstable 60-mer, I3-01. In mice and rabbits, these gp140 nanoparticles induced tier 2 neutralizing antibody responses more effectively than soluble trimers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.aau6769DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6248932PMC
November 2018

Rational Design of DNA-Expressed Stabilized Native-Like HIV-1 Envelope Trimers.

Cell Rep 2018 09;24(12):3324-3338.e5

Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London W2 1PG, UK. Electronic address:

The HIV-1-envelope glycoprotein (Env) is the main target of antigen design for antibody-based prophylactic vaccines. The generation of broadly neutralizing antibodies (bNAb) likely requires the appropriate presentation of stabilized trimers preventing exposure of non-neutralizing antibody (nNAb) epitopes. We designed a series of membrane-bound Envs with increased trimer stability through the introduction of key stabilization mutations. We derived a stabilized HIV-1 trimer, ConSOSL.UFO.750, which displays a dramatic reduction in nNAb binding while maintaining high quaternary and MPER-specific bNAb binding. Its soluble counterpart, ConSOSL.UFO.664, displays similar antigenicity, and its native-like Env structure is confirmed by negative stain-EM and glycosylation profiling of the soluble ConSOSL.UFO.664 trimer. A rabbit immunization study demonstrated that the ConSOSL.UFO.664 can induce autologous tier 2 neutralization. We have successfully designed a stabilized native-like Env trimer amenable to nucleic acid or viral vector-based vaccination strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2018.08.051DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167709PMC
September 2018

Effects of Adjuvants on HIV-1 Envelope Glycoprotein SOSIP Trimers .

J Virol 2018 07 13;92(13). Epub 2018 Jun 13.

Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA

Native-like, soluble, recombinant SOSIP trimers of various designs and based on several genes of human immunodeficiency virus type 1 (HIV-1) are being tested as immunogens in different animal models. These experiments almost always involve coformulating the trimers with an adjuvant to boost the magnitude of the immune responses. One factor relevant to the choice of an adjuvant is that it should not physically damage the immunogen or impede its ability to present relevant epitopes. As examples, an adjuvant formulation that includes harsh detergents could disrupt the structural integrity of a trimer, and any charged compounds in the formulation could bind to countercharged regions of the trimer and physically occlude nearby epitopes. While a few adjuvants have been tested for their potential effects on SOSIP trimers , there has been no systematic study. Here, we have assessed how nine different adjuvants of various compositions affect SOSIP trimers of the BG505 and B41 genotypes. We used negative-stain electron microscopy, thermal denaturation, and gel electrophoresis to evaluate effects on trimer integrity and immunoassays to measure effects on the presentation of various epitopes. We conclude that most of the tested adjuvants are benign from these perspectives, but some raise grounds for concern. An acidified alum formulation is highly disruptive to trimer integrity, and a DNA-based polyanionic CpG oligodeoxynucleotide adjuvant binds to trimers and occludes the trimer apex epitope for the PGT145 neutralizing antibody. The methods described here should be generalizable to protein subunit vaccines targeting various pathogens. Adjuvant formulations increase the magnitude of immune responses to vaccine antigens. They are critically important for formulation of HIV-1 envelope glycoprotein (Env) vaccines intended to induce antibody production, as Env proteins are otherwise only very weakly immunogenic. The HIV-1 vaccine field now uses the well-defined structures of trimeric Env glycoproteins, like SOSIPs, to present multiple known epitopes for broad and potent neutralizing human antibodies in a native-like conformation. Successful adjuvant formulations must not disrupt how the trimers are folded, as that could adversely affect their performance as immunogens. We studied whether the various adjuvants most commonly used in animal experiments affect the integrity of two different SOSIP trimers Most adjuvant classes are not problematic, but an aluminum sulfate formulation is highly damaging, as it exposes trimers to acidic pH and a nucleic acid-based adjuvant can bind to the trimer and block access to a key neutralizing epitope.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.00381-18DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002727PMC
July 2018

Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505 SOSIP trimers in rabbits and macaques.

PLoS Pathog 2018 02 23;14(2):e1006913. Epub 2018 Feb 23.

Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America.

The native-like, soluble SOSIP.664 trimer based on the BG505 clade A env gene of HIV-1 is immunogenic in various animal species, of which the most studied are rabbits and rhesus macaques. The trimer induces autologous neutralizing antibodies (NAbs) consistently but at a wide range of titers and with incompletely determined specificities. A precise delineation of immunogenic neutralization epitopes on native-like trimers could help strategies to extend the NAb response to heterologous HIV-1 strains. One autologous NAb epitope on the BG505 Env trimer is known to involve residues lining a hole in the glycan shield that is blocked by adding a glycan at either residue 241 or 289. This glycan-hole epitope accounts for the NAb response of most trimer-immunized rabbits but not for that of a substantial subset. Here, we have used a large panel of mutant BG505 Env-pseudotyped viruses to define additional sites. A frequently immunogenic epitope in rabbits is blocked by adding a glycan at residue 465 near the junction of the gp120 V5 loop and β24 strand and is influenced by amino-acid changes in the structurally nearby C3 region. We name this new site the "C3/465 epitope". Of note is that the C3 region was under selection pressure in the infected infant from whom the BG505 virus was isolated. A third NAb epitope is located in the V1 region of gp120, although it is rarely immunogenic. In macaques, NAb responses induced by BG505 SOSIP trimers are more often directed at the C3/465 epitope than the 241/289-glycan hole.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1006913DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841823PMC
February 2018

Envelope proteins of two HIV-1 clades induced different epitope-specific antibody response.

Vaccine 2018 03 9;36(12):1627-1636. Epub 2018 Feb 9.

THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, P.O. Box # 04, Faridabad-1221001, Haryana, India; IAVI Neutralizing Antibody Center at The Scripps Research Institute, La Jolla, California, USA. Electronic address:

Using HIV-1 envelope protein (Env)-based immunogens that closely mimic the conformation of functional HIV-1 Envs and represent the isolates prevalent in relevant geographical region is considered a rational approach towards developing HIV vaccine. We recently reported that like clade B Env, JRFL, membrane bound Indian clade C Env, 4-2.J41 is also efficiently cleaved and displays desirable antigenic properties for plasmid DNA immunization. Here, we evaluated the immune response in rabbit by injecting the animals with plasmid expressing membrane bound efficiently cleaved 4-2.J41 Env followed by its gp140-foldon (gp140-fd) protein boost. The purified 4-2.J41-gp140-fd protein is recognized by a wide panel of broadly neutralizing antibodies (bNAbs) including the quaternary conformation-dependent antibody, PGT145 with high affinity. We have also evaluated and compared the quality of antibody response elicited in rabbits after immunizing with plasmid DNA expressing the membrane bound efficiently cleaved Env followed by gp140-fd proteins boost with either of clade C Env, 4-2.J41 or clade B Env, JRFL or in combination. In comparison to JRFL group, 4-2.J41 group elicited autologous as well as limited low level cross clade neutralizing antibody response. Preliminary epitope-mapping of sera from animals show that in contrast to JRFL group, no reactivity to either linear peptides or V3-loop is detected in 4-2.J41 group. Furthermore, the presence of conformation-specific antibody in sera from animals immunized with 4-2.J41 Env is observed. However, unlike JRFL group, in 4-2.J41 group of animals, CD4-binding site-directed antibodies cannot be detected. Additionally, we have demonstrated that the quality of antibody response in combination group is guided by JRFL Env-based immunogen suggesting that the selection and the quality of Envs in multicade candidate vaccine are important factors to elicit desirable response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2018.01.081DOI Listing
March 2018

Integrity of Glycosylation Processing of a Glycan-Depleted Trimeric HIV-1 Immunogen Targeting Key B-Cell Lineages.

J Proteome Res 2018 03 8;17(3):987-999. Epub 2018 Feb 8.

Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom.

Broadly neutralizing antibodies (bNAbs) that target the trimeric HIV-1 envelope glycoprotein spike (Env) are tools that can guide the design of recombinant Env proteins intended to engage the predicted human germline precursors of bNAbs (gl-bNAbs). The protein components of gl-bNAb epitopes are often masked by glycans, while mature bNAbs can evolve to accommodate or bypass these shielding glycans. The design of germline-targeting Env immunogens therefore includes the targeted deletion of specific glycan sites. However, the processing of glycans on Env trimers can be influenced by the density with which they are packed together, a highly relevant point given the essential contributions under-processed glycans make to multiple bNAb epitopes. We sought to determine the impact of the removal of 15 potential N-glycan sites (5 per protomer) from the germline-targeting soluble trimer, BG505 SOSIP.v4.1-GT1, using quantitative, site-specific N-glycan mass spectrometry analysis. We find that, compared with SOSIP.664, there was little overall change in the glycan profile but only subtle increases in the extent of processing at sites immediately adjacent to where glycans had been deleted. We conclude that multiple glycans can be deleted from BG505 SOSIP trimers without perturbing the overall integrity of the glycan shield.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jproteome.7b00639DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5846105PMC
March 2018

Structure-based design of native-like HIV-1 envelope trimers to silence non-neutralizing epitopes and eliminate CD4 binding.

Nat Commun 2017 11 21;8(1):1655. Epub 2017 Nov 21.

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.

Elicitation of broadly neutralizing antibodies (bnAbs) is a primary HIV vaccine goal. Native-like trimers mimicking virion-associated spikes present nearly all bnAb epitopes and are therefore promising vaccine antigens. However, first generation native-like trimers expose epitopes for non-neutralizing antibodies (non-nAbs), which may hinder bnAb induction. We here employ computational and structure-guided design to develop improved native-like trimers that reduce exposure of non-nAb epitopes in the V3-loop and trimer base, minimize both CD4 reactivity and CD4-induced non-nAb epitope exposure, and increase thermal stability while maintaining bnAb antigenicity. In rabbit immunizations with native-like trimers of the 327c isolate, improved trimers suppress elicitation of V3-directed and tier-1 neutralizing antibodies and induce robust autologous tier-2 neutralization, unlike a first-generation trimer. The improved native-like trimers from diverse HIV isolates, and the design methods, have promise to assist in the development of a HIV vaccine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-017-01549-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698488PMC
November 2017