Publications by authors named "Fu Siong Ng"

68 Publications

Size matters in atrial fibrillation: the underestimated importance of reduction of contiguous electrical mass underlying the effectiveness of catheter ablation.

Europace 2021 May 5. Epub 2021 May 5.

Division of Cardiology, University of British Columbia, 740 Hillside Ave, Vancouver, BC V8T 1Z4, Canada.

Evidence has accumulated over the last century of the importance of a critical electrical mass in sustaining atrial fibrillation (AF). AF ablation certainly reduces electrically contiguous atrial mass, but this is not widely accepted to be an important part of its mechanism of action. In this article, we review data showing that atrial size is correlated in many settings with AF propensity. Larger mammals are more likely to exhibit AF. This is seen both in the natural world and in animal models, where it is much easier to create a goat model than a mouse model of AF, for example. This also extends to humans-athletes, taller people, and obese individuals all have large atria and are more likely to exhibit AF. Within an individual, risk factors such as hypertension, valvular disease and ischaemia can enlarge the atrium and increase the risk of AF. With respect to AF ablation, we explore how variations in ablation strategy and the relative effectiveness of these strategies may suggest that a reduction in electrical atrial mass is an important mechanism of action. We counter this with examples in which there is no doubt that mass reduction is less important than competing theories such as ganglionated plexus ablation. We conclude that, when considering future strategies for the ablative therapy of AF, it is important not to discount the possibility that contiguous electrical mass reduction is the most important mechanism despite the disappointing consequence being that enhancing success rates in AF ablation may involve greater tissue destruction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/europace/euab078DOI Listing
May 2021

Rotigaptide Infusion for the First 7 Days After Myocardial Infarction-Reperfusion Reduced Late Complexity of Myocardial Architecture of the Healing Border-Zone and Arrhythmia Inducibility.

J Am Heart Assoc 2021 May 17;10(9):e020006. Epub 2021 Apr 17.

National Heart & Lung Institute and ElectroCardioMaths Programme of the Imperial Centre for Cardiac EngineeringImperial College London London United Kingdom.

Background Survivors of myocardial infarction are at increased risk of late ventricular arrhythmias, with infarct size and scar heterogeneity being key determinants of arrhythmic risk. Gap junctions facilitate the passage of small ions and morphogenic cell signaling between myocytes. We hypothesized that gap junctions enhancement during infarction-reperfusion modulates structural and electrophysiological remodeling and reduces late arrhythmogenesis. Methods and Results Infarction-reperfusion surgery was carried out in male Sprague-Dawley rats followed by 7 days of rotigaptide or saline administration. The in vivo and ex vivo arrhythmogenicity was characterized by programmed electrical stimulation 3 weeks later, followed by diffusion-weighted magnetic resonance imaging and Masson's trichrome histology. Three weeks after 7-day postinfarction administration of rotigaptide, ventricular tachycardia/ventricular fibrillation was induced on programmed electrical stimulation in 20% and 53% of rats, respectively (rotigaptide versus control), resulting in reduction of arrhythmia score (3.2 versus 1.4, =0.018), associated with the reduced magnetic resonance imaging parameters fractional anisotropy (fractional anisotropy: -5% versus -15%; =0.062) and mean diffusivity (mean diffusivity: 2% versus 6%, =0.042), and remodeling of the 3-dimensional laminar structure of the infarct border zone with reduction of the mean (16° versus 19°, =0.013) and the dispersion (9° versus 12°, =0.015) of the myofiber transverse angle. There was no change in ECG features, spontaneous arrhythmias, or mortality. Conclusions Enhancement of gap junctions function by rotigaptide administered during the early healing phase in reperfused infarction reduces later complexity of infarct scar morphology and programmed electrical stimulation-induced arrhythmias, and merits further exploration as a feasible and practicable intervention in the acute myocardial infarction management to reduce late arrhythmic risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/JAHA.120.020006DOI Listing
May 2021

Novel Low-Voltage MultiPulse Therapy to Terminate Atrial Fibrillation.

JACC Clin Electrophysiol 2021 Mar 25. Epub 2021 Mar 25.

George Washington University, Washington, DC, USA. Electronic address:

Objectives: This first-in-human feasibility study was undertaken to translate the novel low-voltage MultiPulse Therapy (MPT) (Cardialen, Inc., Minneapolis, Minnesota), which was previously been shown to be effective in preclinical studies in terminating atrial fibrillation (AF), into clinical use.

Background: Current treatment options for AF, the most common arrhythmia in clinical practice, have limited success. Previous attempts at treating AF by using implantable devices have been limited by the painful nature of high-voltage shocks.

Methods: Forty-two patients undergoing AF ablation were recruited at 6 investigational centers worldwide. Before ablation, electrode catheters were placed in the coronary sinus, right and/or left atrium, for recording and stimulation. After the induction of AF, MPT, which consists of up to a 3-stage sequence of far- and near-field stimulation pulses of varied amplitude, duration, and interpulse timing, was delivered via temporary intracardiac leads. MPT parameters and delivery methods were iteratively optimized.

Results: In the 14 patients from the efficacy phase, MPT terminated 37 of 52 (71%) of AF episodes, with the lowest median energy of 0.36 J (interquartile range: 0.14 to 1.21 J) and voltage of 42.5 V (interquartile range: 25 to 75 V). Overall, 38% of AF terminations occurred within 2 seconds of MPT delivery (p < 0.0001). Shorter time between AF induction and MPT predicted success of MPT in terminating AF (p < 0.001).

Conclusions: MPT effectively terminated AF at voltages and energies known to be well tolerated or painless in some patients. Our results support further studies of the concept of implanted devices for early AF conversion to reduce AF burden, symptoms, and progression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacep.2020.12.014DOI Listing
March 2021

Electroanatomic Characterization and Ablation of Scar-Related Isthmus Sites Supporting Perimitral Flutter.

JACC Clin Electrophysiol 2021 Jan 20. Epub 2021 Jan 20.

Imperial College Healthcare, London, United Kingdom. Electronic address:

Objectives: The authors reviewed 3-dimensional electroanatomic maps of perimitral flutter to identify scar-related isthmuses and determine their effectiveness as ablation sites.

Background: Perimitral flutter is usually treated by linear ablation between the left lower pulmonary vein and mitral annulus. Conduction block can be difficult to achieve, and recurrences are common.

Methods: Patients undergoing atrial tachycardia ablation using CARTO3 (Biosense Webster Inc., Irvine, California) were screened from 4 centers. Patients with confirmed perimitral flutter were reviewed for the presence of scar-related isthmuses by using CARTO3 with the ConfiDense and Ripple Mapping modules.

Results: Confirmed perimitral flutter was identified in 28 patients (age 65.2 ± 8.1 years), of whom 26 patients had prior atrial fibrillation ablation. Scar-related isthmus ablation was performed in 12 of 28 patients. Perimitral flutter was terminated in all following correct identification of a scar-related isthmus using ripple mapping. The mean scar voltage threshold was 0.11 ± 0.05 mV. The mean width of scar-related isthmuses was 8.9 ± 3.5 mm with a conduction speed of 31.8 ± 5.5 cm/s compared to that of normal left atrium of 71.2 ± 21.5 cm/s (p < 0.0001). Empirical, anatomic ablation was performed in 16 of 28, with termination in 10 of 16 (63%; p = 0.027). Significantly less ablation was required for critical isthmus ablation compared to empirical linear lesions (11.4 ± 5.3 vs. 26.2 ± 17.1 min; p = 0.0004). All 16 cases of anatomic ablation were reviewed with ripple mapping, and 63% had scar-related isthmus.

Conclusions: Perimitral flutter is usually easy to diagnose but can be difficult to ablate. Ripple mapping is highly effective at locating the critical isthmus maintaining the tachycardia and avoiding anatomic ablation lines. This approach has a higher termination rate with less radiofrequency ablation required.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacep.2020.10.017DOI Listing
January 2021

Oxidative stress and atrial fibrillation - association or causation?

Rev Port Cardiol 2021 01 9;40(1):11-12. Epub 2021 Jan 9.

National Heart & Lung Institute, Imperial College London, United Kingdom.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.repc.2020.12.007DOI Listing
January 2021

Cross-Priming Dendritic Cells Exacerbate Immunopathology After Ischemic Tissue Damage in the Heart.

Circulation 2021 Feb 10;143(8):821-836. Epub 2020 Dec 10.

National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.).

Background: Ischemic heart disease is a leading cause of heart failure and despite advanced therapeutic options, morbidity and mortality rates remain high. Although acute inflammation in response to myocardial cell death has been extensively studied, subsequent adaptive immune activity and anti-heart autoimmunity may also contribute to the development of heart failure. After ischemic injury to the myocardium, dendritic cells (DC) respond to cardiomyocyte necrosis, present cardiac antigen to T cells, and potentially initiate a persistent autoimmune response against the heart. Cross-priming DC have the ability to activate both CD4 helper and CD8 cytotoxic T cells in response to necrotic cells and may thus be crucial players in exacerbating autoimmunity targeting the heart. This study investigates a role for cross-priming DC in post-myocardial infarction immunopathology through presentation of self-antigen from necrotic cardiac cells to cytotoxic CD8 T cells.

Methods: We induced type 2 myocardial infarction-like ischemic injury in the heart by treatment with a single high dose of the β-adrenergic agonist isoproterenol. We characterized the DC population in the heart and mediastinal lymph nodes and analyzed long-term cardiac immunopathology and functional decline in wild type and -depleted mice lacking DC cross-priming function.

Results: A diverse DC population, including cross-priming DC, is present in the heart and activated after ischemic injury. mice deficient in DC cross-priming are protected from persistent immune-mediated myocardial damage and decline of cardiac function, likely because of dampened activation of cytotoxic CD8 T cells.

Conclusion: Activation of cytotoxic CD8 T cells by cross-priming DC contributes to exacerbation of postischemic inflammatory damage of the myocardium and corresponding decline in cardiac function. Importantly, this provides novel therapeutic targets to prevent postischemic immunopathology and heart failure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.120.044581DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7899721PMC
February 2021

Type 2 MI induced by a single high dose of isoproterenol in C57BL/6J mice triggers a persistent adaptive immune response against the heart.

J Cell Mol Med 2021 Jan 29;25(1):229-243. Epub 2020 Nov 29.

National Heart and Lung Institute, Imperial College London, London, UK.

Heart failure is the common final pathway of several cardiovascular conditions and a major cause of morbidity and mortality worldwide. Aberrant activation of the adaptive immune system in response to myocardial necrosis has recently been implicated in the development of heart failure. The ß-adrenergic agonist isoproterenol hydrochloride is used for its cardiac effects in a variety of different dosing regimens with high doses causing acute cardiomyocyte necrosis. To assess whether isoproterenol-induced cardiomyocyte necrosis triggers an adaptive immune response against the heart, we treated C57BL/6J mice with a single intraperitoneal injection of isoproterenol. We confirmed tissue damage reminiscent of human type 2 myocardial infarction. This is followed by an adaptive immune response targeting the heart as demonstrated by the activation of T cells, the presence of anti-heart auto-antibodies in the serum as late as 12 weeks after initial challenge and IgG deposition in the myocardium. All of these are hallmark signs of an established autoimmune response. Adoptive transfer of splenocytes from isoproterenol-treated mice induces left ventricular dilation and impairs cardiac function in healthy recipients. In summary, a single administration of a high dose of isoproterenol is a suitable high-throughput model for future studies of the pathological mechanisms of anti-heart autoimmunity and to test potential immunomodulatory therapeutic approaches.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jcmm.15937DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7810962PMC
January 2021

Non-invasive detection of exercise-induced cardiac conduction abnormalities in sudden cardiac death survivors in the inherited cardiac conditions.

Europace 2021 Feb;23(2):305-312

Institute of Cardiovascular Science, University College London & Bart's Heart Centre, Bart's Health NHS Trust, London, UK.

Aims : Rate adaptation of the action potential ensures spatial heterogeneities in conduction across the myocardium are minimized at different heart rates providing a protective mechanism against ventricular fibrillation (VF) and sudden cardiac death (SCD), which can be quantified by the ventricular conduction stability (V-CoS) test previously described. We tested the hypothesis that patients with a history of aborted SCD due to an underlying channelopathy or cardiomyopathy have a reduced capacity to maintain uniform activation following exercise.

Methods And Results : Sixty individuals, with (n = 28) and without (n = 32) previous aborted-SCD event underwent electro-cardiographic imaging recordings following exercise treadmill test. These included 25 Brugada syndrome, 13 hypertrophic cardiomyopathy, 12 idiopathic VF, and 10 healthy controls. Data were inputted into the V-CoS programme to calculate a V-CoS score that indicate the percentage of ventricle that showed no significant change in ventricular activation, with a lower score indicating the development of greater conduction heterogeneity. The SCD group, compared to those without, had a lower median (interquartile range) V-CoS score at peak exertion [92.8% (89.8-96.3%) vs. 97.3% (94.9-99.1%); P < 0.01] and 2 min into recovery [95.2% (91.1-97.2%) vs. 98.9% (96.9-99.5%); P < 0.01]. No significant difference was observable later into recovery at 5 or 10 min. Using the lowest median V-CoS scores obtained during the entire recovery period post-exertion, SCD survivors had a significantly lower score than those without for each of the different underlying aetiologies.

Conclusion : Data from this pilot study demonstrate the potential use of this technique in risk stratification for the inherited cardiac conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/europace/euaa248DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7868885PMC
February 2021

Toward Mechanism-Directed Electrophenotype-Based Treatments for Atrial Fibrillation.

Front Physiol 2020 28;11:987. Epub 2020 Aug 28.

National Heart & Lung Institute, Imperial College London, London, United Kingdom.

Current treatment approaches for persistent atrial fibrillation (AF) have a ceiling of success of around 50%. This is despite 15 years of developing adjunctive ablation strategies in addition to pulmonary vein isolation to target the underlying arrhythmogenic substrate in AF. A major shortcoming of our current approach to AF treatment is its predominantly empirical nature. This has in part been due to a lack of consensus on the mechanisms that sustain human AF. In this article, we review evidence suggesting that the previous debates on AF being an organized arrhythmia with a focal driver a disorganized rhythm sustained by multiple wavelets, may prove to be a false dichotomy. Instead, a range of fibrillation electrophenotypes exists along a continuous spectrum, and the predominant mechanism in an individual case is determined by the nature and extent of remodeling of the underlying substrate. We propose moving beyond the current empirical approach to AF treatment, highlight the need to prescribe AF treatments based on the underlying AF electrophenotype, and review several possible novel mapping algorithms that may be useful in discerning the AF electrophenotype to guide tailored treatments, including Granger Causality mapping.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphys.2020.00987DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7493660PMC
August 2020

Within-patient comparison of His-bundle pacing, right ventricular pacing, and right ventricular pacing avoidance algorithms in patients with PR prolongation: Acute hemodynamic study.

J Cardiovasc Electrophysiol 2020 11 5;31(11):2964-2974. Epub 2020 Oct 5.

National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, London, UK.

Aims: A prolonged PR interval may adversely affect ventricular filling and, therefore, cardiac function. AV delay can be corrected using right ventricular pacing (RVP), but this induces ventricular dyssynchrony, itself harmful. Therefore, in intermittent heart block, pacing avoidance algorithms are often implemented. We tested His-bundle pacing (HBP) as an alternative.

Methods: Outpatients with a long PR interval (>200 ms) and intermittent need for ventricular pacing were recruited. We measured within-patient differences in high-precision hemodynamics between AV-optimized RVP and HBP, as well as a pacing avoidance algorithm (Managed Ventricular Pacing [MVP]).

Results: We recruited 18 patients. Mean left ventricular ejection fraction was 44.3 ± 9%. Mean intrinsic PR interval was 266 ± 42 ms and QRS duration was 123 ± 29 ms. RVP lengthened QRS duration (+54 ms, 95% CI 42-67 ms, p < .0001) while HBP delivered a shorter QRS duration than RVP (-56 ms, 95% CI -67 to -46 ms, p < .0001). HBP did not increase QRS duration (-2 ms, 95% CI -8 to 13 ms, p = .6). HBP improved acute systolic blood pressure by mean of 5.0 mmHg (95% CI 2.8-7.1 mmHg, p < .0001) compared to RVP and by 3.5 mmHg (95% CI 1.9-5.0 mmHg, p = .0002) compared to the pacing avoidance algorithm. There was no significant difference in hemodynamics between RVP and ventricular pacing avoidance (p = .055).

Conclusions: HBP provides better acute cardiac function than pacing avoidance algorithms and RVP, in patients with prolonged PR intervals. HBP allows normalization of prolonged AV delays (unlike pacing avoidance) and does not cause ventricular dyssynchrony (unlike RVP). Clinical trials may be justified to assess whether these acute improvements translate into longer term clinical benefits in patients with bradycardia indications for pacing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jce.14763DOI Listing
November 2020

Discriminating electrocardiographic responses to His-bundle pacing using machine learning.

Cardiovasc Digit Health J 2020 Jul-Aug;1(1):11-20

National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, London, United Kingdom.

Background: His-bundle pacing (HBP) has emerged as an alternative to conventional ventricular pacing because of its ability to deliver physiological ventricular activation. Pacing at the His bundle produces different electrocardiographic (ECG) responses: selective His-bundle pacing (S-HBP), non-selective His bundle pacing (NS-HBP), and myocardium-only capture (MOC). These 3 capture types must be distinguished from each other, which can be challenging and time-consuming even for experts.

Objective: The purpose of this study was to use artificial intelligence (AI) in the form of supervised machine learning using a convolutional neural network (CNN) to automate HBP ECG interpretation.

Methods: We identified patients who had undergone HBP and extracted raw 12-lead ECG data during S-HBP, NS-HBP, and MOC. A CNN was trained, using 3-fold cross-validation, on 75% of the segmented QRS complexes labeled with their capture type. The remaining 25% was kept aside as a testing dataset.

Results: The CNN was trained with 1297 QRS complexes from 59 patients. Cohen kappa for the neural network's performance on the 17-patient testing set was 0.59 (95% confidence interval 0.30 to 0.88; <.0001), with an overall accuracy of 75%. The CNN's accuracy in the 17-patient testing set was 67% for S-HBP, 71% for NS-HBP, and 84% for MOC.

Conclusion: We demonstrated proof of concept that a neural network can be trained to automate discrimination between HBP ECG responses. When a larger dataset is trained to higher accuracy, automated AI ECG analysis could facilitate HBP implantation and follow-up and prevent complications resulting from incorrect HBP ECG analysis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cvdhj.2020.07.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484933PMC
September 2020

Proarrhythmic electrophysiological and structural remodeling in rheumatoid arthritis.

Am J Physiol Heart Circ Physiol 2020 11 18;319(5):H1008-H1020. Epub 2020 Sep 18.

National Heart and Lung Institute, Imperial College London, United Kingdom.

Chronic inflammatory disorders, including rheumatoid arthritis (RA), are associated with a twofold increase in the incidence of sudden cardiac death (SCD) compared with the healthy population. Although this is partly explained by an increased prevalence of coronary artery disease, growing evidence suggests that ischemia alone cannot completely account for the increased risk. The present review explores the mechanisms of cardiac electrophysiological remodeling in response to chronic inflammation in RA. In particular, it focuses on the roles of nonischemic structural remodeling, altered cardiac ionic currents, and autonomic nervous system dysfunction in ventricular arrhythmogenesis and SCD. It also explores whether common genetic elements predispose to both RA and SCD. Finally, it evaluates the potential dual effects of disease-modifying therapy in both diminishing and promoting the risk of ventricular arrhythmias and SCD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00401.2020DOI Listing
November 2020

Prolonged ursodeoxycholic acid administration reduces acute ischaemia-induced arrhythmias in adult rat hearts.

Sci Rep 2020 09 17;10(1):15284. Epub 2020 Sep 17.

National Heart and Lung Institute, Imperial College London, London, UK.

Acute myocardial ischaemia and reperfusion (I-R) are major causes of ventricular arrhythmias in patients with a history of coronary artery disease. Ursodeoxycholic acid (UDCA) has previously been shown to be antiarrhythmic in fetal hearts. This study was performed to investigate if UDCA protects against ischaemia-induced and reperfusion-induced arrhythmias in the adult myocardium, and compares the effect of acute (perfusion only) versus prolonged (2 weeks pre-treatment plus perfusion) UDCA administration. Langendorff-perfused adult Sprague-Dawley rat hearts were subjected to acute regional ischaemia by ligation of the left anterior descending artery (10 min), followed by reperfusion (2 min), and arrhythmia incidence quantified. Prolonged UDCA administration reduced the incidence of acute ischaemia-induced arrhythmias (p = 0.028), with a reduction in number of ventricular ectopic beats during the ischaemic phase compared with acute treatment (10 ± 3 vs 58 ± 15, p = 0.036). No antiarrhythmic effect was observed in the acute UDCA administration group. Neither acute nor prolonged UDCA treatment altered the incidence of reperfusion arrhythmias. The antiarrhythmic effect of UDCA may be partially mediated by an increase in cardiac wavelength, due to the attenuation of conduction velocity slowing (p = 0.03), and the preservation of Connexin43 phosphorylation during acute ischaemia (p = 0.0027). The potential antiarrhythmic effects of prolonged UDCA administration merit further investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-72016-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7499428PMC
September 2020

Development of a pro-arrhythmic ex vivo intact human and porcine model: cardiac electrophysiological changes associated with cellular uncoupling.

Pflugers Arch 2020 10 1;472(10):1435-1446. Epub 2020 Sep 1.

Faculty of Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.

We describe a human and large animal Langendorff experimental apparatus for live electrophysiological studies and measure the electrophysiological changes due to gap junction uncoupling in human and porcine hearts. The resultant ex vivo intact human and porcine model can bridge the translational gap between smaller simple laboratory models and clinical research. In particular, electrophysiological models would benefit from the greater myocardial mass of a large heart due to its effects on far-field signal, electrode contact issues and motion artefacts, consequently more closely mimicking the clinical setting. Porcine (n = 9) and human (n = 4) donor hearts were perfused on a custom-designed Langendorff apparatus. Epicardial electrograms were collected at 16 sites across the left atrium and left ventricle. A total of 1 mM of carbenoxolone was administered at 5 ml/min to induce cellular uncoupling, and then recordings were repeated at the same sites. Changes in electrogram characteristics were analysed. We demonstrate the viability of a controlled ex vivo model of intact porcine and human hearts for electrophysiology with pharmacological modulation. Carbenoxolone reduces cellular coupling and changes contact electrogram features. The time from stimulus artefact to (-dV/dt) increased between baseline and carbenoxolone (47.9 ± 4.1-67.2 ± 2.7 ms) indicating conduction slowing. The features with the largest percentage change between baseline and carbenoxolone were fractionation + 185.3%, endpoint amplitude - 106.9%, S-endpoint gradient + 54.9%, S point - 39.4%, RS ratio + 38.6% and (-dV/dt) - 20.9%. The physiological relevance of this methodological tool is that it provides a model to further investigate pharmacologically induced pro-arrhythmic substrates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-020-02446-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7476990PMC
October 2020

Detecting undiagnosed atrial fibrillation in UK primary care: Validation of a machine learning prediction algorithm in a retrospective cohort study.

Eur J Prev Cardiol 2020 Aug 13:2047487320942338. Epub 2020 Aug 13.

Uxbridge, Bristol-Myers Squibb Pharmaceuticals Ltd., UK.

Aims: To evaluate the ability of a machine learning algorithm to identify patients at high risk of atrial fibrillation in primary care.

Methods: A retrospective cohort study was undertaken using the DISCOVER registry to validate an algorithm developed using a Clinical Practice Research Datalink (CPRD) dataset. The validation dataset included primary care patients in London, England aged ≥30 years from 1 January 2006 to 31 December 2013, without a diagnosis of atrial fibrillation in the prior 5 years. Algorithm performance metrics were sensitivity, specificity, positive predictive value, negative predictive value (NPV) and number needed to screen (NNS). Subgroup analysis of patients aged ≥65 years was also performed.

Results: Of 2,542,732 patients in DISCOVER, the algorithm identified 604,135 patients suitable for risk assessment. Of these, 3.0% (17,880 patients) had a diagnosis of atrial fibrillation recorded before study end. The area under the curve of the receiver operating characteristic was 0.87, compared with 0.83 in algorithm development. The NNS was nine patients, matching the CPRD cohort. In patients aged ≥30 years, the algorithm correctly identified 99.1% of patients who did not have atrial fibrillation (NPV) and 75.0% of true atrial fibrillation cases (sensitivity). Among patients aged ≥65 years ( = 117,965), the NPV was 96.7% with 91.8% sensitivity.

Conclusions: This atrial fibrillation risk prediction algorithm, based on machine learning methods, identified patients at highest risk of atrial fibrillation. It performed comparably in a large, real-world population-based cohort and the developmental registry cohort. If implemented in primary care, the algorithm could be an effective tool for narrowing the population who would benefit from atrial fibrillation screening in the United Kingdom.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/2047487320942338DOI Listing
August 2020

The ectopy-triggering ganglionated plexuses in atrial fibrillation.

Auton Neurosci 2020 11 21;228:102699. Epub 2020 Jul 21.

Myocardial Function Section, NHLI, Imperial College London, UK; Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK; Imperial Centre for Cardiac Engineering, Imperial College London, London, UK. Electronic address:

Background: Epicardial ganglionated plexuses (GP) have an important role in the pathogenesis of atrial fibrillation (AF). The relationship between anatomical, histological and functional effects of GP is not well known. We previously described atrioventricular (AV) dissociating GP (AVD-GP) locations. In this study, we hypothesised that ectopy triggering GP (ET-GP) are upstream triggers of atrial ectopy/AF and have different anatomical distribution to AVD-GP.

Objectives: We mapped and characterised ET-GP to understand their neural mechanism in AF and anatomical distribution in the left atrium (LA).

Methods: 26 patients with paroxysmal AF were recruited. All were paced in the LA with an ablation catheter. High frequency stimulation (HFS) was synchronised to each paced stimulus for delivery within the local atrial refractory period. HFS responses were tagged onto CARTO™ 3D LA geometry. All geometries were transformed onto one reference LA shell. A probability distribution atlas of ET-GP was created. This identified high/low ET-GP probability regions.

Results: 2302 sites were tested with HFS, identifying 579 (25%) ET-GP. 464 ET-GP were characterised, where 74 (16%) triggered ≥30s AF/AT. Median 97 (IQR 55) sites were tested, identifying 19 (20%) ET-GP per patient. >30% of ET-GP were in the roof, mid-anterior wall, around all PV ostia except in the right inferior PV (RIPV) in the posterior wall.

Conclusion: ET-GP can be identified by endocardial stimulation and their anatomical distribution, in contrast to AVD-GP, would be more likely to be affected by wide antral circumferential ablation. This may contribute to AF ablation outcomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.autneu.2020.102699DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511599PMC
November 2020

Anatomical Distribution of Ectopy-Triggering Plexuses in Patients With Atrial Fibrillation.

Circ Arrhythm Electrophysiol 2020 09 27;13(9):e008715. Epub 2020 Jul 27.

Myocardial Function Section, Imperial Centre for Translational and Experimental Medicine (M.-Y.K., B.C.S., M.B.S., C.D.C., F.S.N., N.S.P., P.B.L., N.W.F.L., P.K.), Imperial College London, United Kingdom.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCEP.120.008715DOI Listing
September 2020

Ventricular fibrillation mechanism and global fibrillatory organization are determined by gap junction coupling and fibrosis pattern.

Cardiovasc Res 2021 Mar;117(4):1078-1090

National Heart & Lung Institute, Imperial College London, 4th Floor, ICTEM Building, 72 Du Cane Road, London W12 0NN, UK.

Aims: Conflicting data exist supporting differing mechanisms for sustaining ventricular fibrillation (VF), ranging from disorganized multiple-wavelet activation to organized rotational activities (RAs). Abnormal gap junction (GJ) coupling and fibrosis are important in initiation and maintenance of VF. We investigated whether differing ventricular fibrosis patterns and the degree of GJ coupling affected the underlying VF mechanism.

Methods And Results: Optical mapping of 65 Langendorff-perfused rat hearts was performed to study VF mechanisms in control hearts with acute GJ modulation, and separately in three differing chronic ventricular fibrosis models; compact fibrosis (CF), diffuse fibrosis (DiF), and patchy fibrosis (PF). VF dynamics were quantified with phase mapping and frequency dominance index (FDI) analysis, a power ratio of the highest amplitude dominant frequency in the cardiac frequency spectrum. Enhanced GJ coupling with rotigaptide (n = 10) progressively organized fibrillation in a concentration-dependent manner; increasing FDI (0 nM: 0.53 ± 0.04, 80 nM: 0.78 ± 0.03, P < 0.001), increasing RA-sustained VF time (0 nM: 44 ± 6%, 80 nM: 94 ± 2%, P < 0.001), and stabilized RAs (maximum rotations for an RA; 0 nM: 5.4 ± 0.5, 80 nM: 48.2 ± 12.3, P < 0.001). GJ uncoupling with carbenoxolone progressively disorganized VF; the FDI decreased (0 µM: 0.60 ± 0.05, 50 µM: 0.17 ± 0.03, P < 0.001) and RA-sustained VF time decreased (0 µM: 61 ± 9%, 50 µM: 3 ± 2%, P < 0.001). In CF, VF activity was disorganized and the RA-sustained VF time was the lowest (CF: 27 ± 7% vs. PF: 75 ± 5%, P < 0.001). Global fibrillatory organization measured by FDI was highest in PF (PF: 0.67 ± 0.05 vs. CF: 0.33 ± 0.03, P < 0.001). PF harboured the longest duration and most spatially stable RAs (patchy: 1411 ± 266 ms vs. compact: 354 ± 38 ms, P < 0.001). DiF (n = 11) exhibited an intermediately organized VF pattern, sustained by a combination of multiple-wavelets and short-lived RAs.

Conclusion: The degree of GJ coupling and pattern of fibrosis influences the mechanism sustaining VF. There is a continuous spectrum of organization in VF, ranging between globally organized fibrillation sustained by stable RAs and disorganized, possibly multiple-wavelet driven fibrillation with no RAs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvaa141DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7983010PMC
March 2021

Granger Causality-Based Analysis for Classification of Fibrillation Mechanisms and Localization of Rotational Drivers.

Circ Arrhythm Electrophysiol 2020 03 16;13(3):e008237. Epub 2020 Feb 16.

National Heart & Lung Institute, Imperial College London, United Kingdom (B.S.H., X.L., N.A.Q., I.M., R.A.C., Z.I.W., N.W.F.L., P.B.L., P.K., N.S.P., F.S.N.).

Background: The mechanisms sustaining myocardial fibrillation remain disputed, partly due to a lack of mapping tools that can accurately identify the mechanism with low spatial resolution clinical recordings. Granger causality (GC) analysis, an econometric tool for quantifying causal relationships between complex time-series, was developed as a novel fibrillation mapping tool and adapted to low spatial resolution sequentially acquired data.

Methods: Ventricular fibrillation (VF) optical mapping was performed in Langendorff-perfused Sprague-Dawley rat hearts (n=18), where novel algorithms were developed using GC-based analysis to (1) quantify causal dependence of neighboring signals and plot GC vectors, (2) quantify global organization with the causality pairing index, a measure of neighboring causal signal pairs, and (3) localize rotational drivers (RDs) by quantifying the circular interdependence of neighboring signals with the circular interdependence value. GC-based mapping tools were optimized for low spatial resolution from downsampled optical mapping data, validated against high-resolution phase analysis and further tested in previous VF optical mapping recordings of coronary perfused donor heart left ventricular wedge preparations (n=12), and adapted for sequentially acquired intracardiac electrograms during human persistent atrial fibrillation mapping (n=16).

Results: Global VF organization quantified by causality pairing index showed a negative correlation at progressively lower resolutions (50% resolution: =0.006, =0.38, 12.5% resolution, =0.004, =0.41) with a phase analysis derived measure of disorganization, locations occupied by phase singularities. In organized VF with high causality pairing index values, GC vector mapping characterized dominant propagating patterns and localized stable RDs, with the circular interdependence value showing a significant difference in driver versus nondriver regions (0.91±0.05 versus 0.35±0.06, =0.0002). These findings were further confirmed in human VF. In persistent atrial fibrillation, a positive correlation was found between the causality pairing index and presence of stable RDs (=0.0005,=0.56). Fifty percent of patients had RDs, with a low incidence of 0.9±0.3 RDs per patient.

Conclusions: GC-based fibrillation analysis can measure global fibrillation organization, characterize dominant propagating patterns, and map RDs using low spatial resolution sequentially acquired data.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCEP.119.008237DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069398PMC
March 2020

Standardised Framework for Quantitative Analysis of Fibrillation Dynamics.

Sci Rep 2019 11 13;9(1):16671. Epub 2019 Nov 13.

National Heart and Lung Institute, Hammersmith Campus, Imperial College London, 72 Du Cane Rd, London, W120UQ, UK.

The analysis of complex mechanisms underlying ventricular fibrillation (VF) and atrial fibrillation (AF) requires sophisticated tools for studying spatio-temporal action potential (AP) propagation dynamics. However, fibrillation analysis tools are often custom-made or proprietary, and vary between research groups. With no optimal standardised framework for analysis, results from different studies have led to disparate findings. Given the technical gap, here we present a comprehensive framework and set of principles for quantifying properties of wavefront dynamics in phase-processed data recorded during myocardial fibrillation with potentiometric dyes. Phase transformation of the fibrillatory data is particularly useful for identifying self-perpetuating spiral waves or rotational drivers (RDs) rotating around a phase singularity (PS). RDs have been implicated in sustaining fibrillation, and thus accurate localisation and quantification of RDs is crucial for understanding specific fibrillatory mechanisms. In this work, we assess how variation of analysis parameters and thresholds in the tracking of PSs and quantification of RDs could result in different interpretations of the underlying fibrillation mechanism. These techniques have been described and applied to experimental AF and VF data, and AF simulations, and examples are provided from each of these data sets to demonstrate the range of fibrillatory behaviours and adaptability of these tools. The presented methodologies are available as an open source software and offer an off-the-shelf research toolkit for quantifying and analysing fibrillatory mechanisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-52976-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853901PMC
November 2019

Quantification of Electromechanical Coupling to Prevent Inappropriate Implantable Cardioverter-Defibrillator Shocks.

JACC Clin Electrophysiol 2019 06 27;5(6):705-715. Epub 2019 Mar 27.

Department of Cardiology, Imperial College Hospitals National Health Service Trust, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom.

Objectives: This study sought to test specialized processing of laser Doppler signals for discriminating ventricular fibrillation (VF) from common causes of inappropriate therapies.

Background: Inappropriate implantable cardioverter-defibrillator (ICD) therapies remain a clinically important problem associated with morbidity and mortality. Tissue perfusion biomarkers, implemented to assist automated diagnosis of VF, sometimes mistake artifacts and random noise for perfusion, which could lead to shocks being inappropriately withheld.

Methods: The study tested a novel processing algorithm that combines electrogram data and laser Doppler perfusion monitoring as a method for assessing circulatory status. Fifty patients undergoing VF induction during ICD implantation were recruited. Noninvasive laser Doppler and continuous electrograms were recorded during both sinus rhythm and VF. Two additional scenarios that might have led to inappropriate shocks were simulated for each patient: ventricular lead fracture and T-wave oversensing. The laser Doppler was analyzed using 3 methods for reducing noise: 1) running mean; 2) oscillatory height; and 3) a novel quantification of electromechanical coupling which gates laser Doppler relative to electrograms. In addition, the algorithm was tested during exercise-induced sinus tachycardia.

Results: Only the electromechanical coupling algorithm found a clear perfusion cut off between sinus rhythm and VF (sensitivity and specificity of 100%). Sensitivity and specificity remained at 100% during simulated lead fracture and electrogram oversensing. (Area under the curve running mean: 0.91; oscillatory height: 0.86; electromechanical coupling: 1.00). Sinus tachycardia did not cause false positive results.

Conclusions: Quantifying the coupling between electrical and perfusion signals increases reliability of discrimination between VF and artifacts that ICDs may interpret as VF. Incorporating such methods into future ICDs may safely permit reductions of inappropriate shocks.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacep.2019.01.025DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6597902PMC
June 2019

Voltage during atrial fibrillation is superior to voltage during sinus rhythm in localizing areas of delayed enhancement on magnetic resonance imaging: An assessment of the posterior left atrium in patients with persistent atrial fibrillation.

Heart Rhythm 2019 09 3;16(9):1357-1367. Epub 2019 Jun 3.

Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom. Electronic address:

Background: Bipolar electrogram voltage during sinus rhythm (V) has been used as a surrogate for atrial fibrosis in guiding catheter ablation of persistent atrial fibrillation (AF), but the fixed rate and wavefront characteristics present during sinus rhythm may not accurately reflect underlying functional vulnerabilities responsible for AF maintenance.

Objective: The purpose of this study was determine whether, given adequate temporal sampling, the spatial distribution of mean AF voltage (V) better correlates with delayed-enhancement magnetic resonance imaging (MRI-DE)-detected atrial fibrosis than V.

Methods: AF was mapped (8 seconds) during index ablation for persistent AF (20 patients) using a 20-pole catheter (660 ± 28 points/map). After cardioversion, V was mapped (557 ± 326 points/map). Electroanatomic and MRI-DE maps were co-registered in 14 patients.

Results: The time course of V was assessed from 1-40 AF cycles (∼8 seconds) at 1113 locations. V stabilized with sampling >4 seconds (mean voltage error 0.05 mV). Paired point analysis of V from segments acquired 30 seconds apart (3667 sites; 15 patients) showed strong correlation (r = 0.95; P <.001). Delayed enhancement (DE) was assessed across the posterior left atrial (LA) wall, occupying 33% ± 13%. V distributions were (median [IQR]) 0.21 [0.14-0.35] mV in DE vs 0.52 [0.34-0.77] mV in non-DE regions. V distributions were 1.34 [0.65-2.48] mV in DE vs 2.37 [1.27-3.97] mV in non-DE. V threshold of 0.35 mV yielded sensitivity of 75% and specificity of 79% in detecting MRI-DE compared with 63% and 67%, respectively, for V (1.8-mV threshold) CONCLUSION: The correlation between low-voltage and posterior LA MRI-DE is significantly improved when acquired during AF vs sinus rhythm. With adequate sampling, mean AF voltage is a reproducible marker reflecting the functional response to the underlying persistent AF substrate.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hrthm.2019.05.032DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722483PMC
September 2019

Interventricular Differences in Action Potential Duration Restitution Contribute to Dissimilar Ventricular Rhythms in Perfused Hearts.

Front Cardiovasc Med 2019 3;6:34. Epub 2019 Apr 3.

National Heart and Lung Institute, Imperial College London, London, United Kingdom.

Dissimilar ventricular rhythms refer to the occurrence of different ventricular tachyarrhythmias in the right and left ventricles or different rates of the same tachyarrhythmia in the two ventricles. We investigated the inducibility of dissimilar ventricular rhythms, their underlying mechanisms, and the impact of anti-arrhythmic drugs (lidocaine and amiodarone) on their occurrence. Ventricular tachyarrhythmias were induced with burst pacing in 28 Langendorff-perfused Sprague Dawley rat hearts (14 control, 8 lidocaine, 6 amiodarone) and bipolar electrograms recorded from the right and left ventricles. Fourteen (6 control, 4 lidocaine, 4 amiodarone) further hearts underwent optical mapping of transmembrane voltage to study interventricular electrophysiological differences and mechanisms of dissimilar rhythms. In control hearts, dissimilar ventricular rhythms developed in 8/14 hearts (57%). In lidocaine treated hearts, there was a lower cycle length threshold for developing dissimilar rhythms, with 8/8 (100%) hearts developing dissimilar rhythms in comparison to 0/6 in the amiodarone group. Dissimilar ventricular tachycardia (VT) rates occurred at longer cycle lengths with lidocaine vs. control (57.1 ± 7.9 vs. 36.6 ± 8.4 ms, < 0.001). The ratio of LV:RV VT rate was greater in the lidocaine group than control (1.91 ± 0.30 vs. 1.76 ± 0.36, < 0.001). The gradient of the action potential duration (APD) restitution curve was shallower in the RV compared with LV (Control - LV: 0.12 ± 0.03 vs RV: 0.002 ± 0.03, = 0.015), leading to LV-to-RV conduction block during VT. Interventricular differences in APD restitution properties likely contribute to the occurrence of dissimilar rhythms. Sodium channel blockade with lidocaine increases the likelihood of dissimilar ventricular rhythms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fcvm.2019.00034DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456660PMC
April 2019

Ventricular conduction stability test: a method to identify and quantify changes in whole heart activation patterns during physiological stress.

Europace 2019 Sep;21(9):1422-1431

National Heart & Lung Institute, Imperial College London, London, UK.

Aims: Abnormal rate adaptation of the action potential is proarrhythmic but is difficult to measure with current electro-anatomical mapping techniques. We developed a method to rapidly quantify spatial discordance in whole heart activation in response to rate cycle length changes. We test the hypothesis that patients with underlying channelopathies or history of aborted sudden cardiac death (SCD) have a reduced capacity to maintain uniform activation following exercise.

Methods And Results: Electrocardiographical imaging (ECGI) reconstructs >1200 electrograms (EGMs) over the ventricles from a single beat, providing epicardial whole heart activation maps. Thirty-one individuals [11 SCD survivors; 10 Brugada syndrome (BrS) without SCD; and 10 controls] with structurally normal hearts underwent ECGI vest recordings following exercise treadmill. For each patient, we calculated the relative change in EGM local activation times (LATs) between a baseline and post-exertion phase using custom written software. A ventricular conduction stability (V-CoS) score calculated to indicate the percentage of ventricle that showed no significant change in relative LAT (<10 ms). A lower score reflected greater conduction heterogeneity. Mean variability (standard deviation) of V-CoS score over 10 consecutive beats was small (0.9 ± 0.5%), with good inter-operator reproducibility of V-CoS scores. Sudden cardiac death survivors, compared to BrS and controls, had the lowest V-CoS scores post-exertion (P = 0.011) but were no different at baseline (P = 0.50).

Conclusion: We present a method to rapidly quantify changes in global activation which provides a measure of conduction heterogeneity and proof of concept by demonstrating SCD survivors have a reduced capacity to maintain uniform activation following exercise.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/europace/euz015DOI Listing
September 2019

Prevalence of spontaneous type I ECG pattern, syncope, and other risk markers in sudden cardiac arrest survivors with Brugada syndrome.

Pacing Clin Electrophysiol 2019 02 6;42(2):257-264. Epub 2019 Jan 6.

Imperial College Healthcare NHS Trust, London, UK.

Introduction: A spontaneous type I electrocardiogram (ECG) pattern and/or unheralded syncope are conventionally used as risk markers for primary prevention of sudden cardiac arrest/death (SCA/SCD) in Brugada syndrome (BrS). In this study, we determine the prevalence of conventional and newer markers of risk in those with and without previous aborted SCA events.

Methods: All patients with BrS were identified at our institute. History of symptoms was obtained from medical tests or from interviews. Other markers of risk were also obtained, such as presence of (1) spontaneous type I pattern, (2) fractionated QRS (fQRS), (3) early repolarization (ER) pattern, (4) late potentials on signal-averaged ECG (SAECG), and (5) response to programmed electrical stimulation.

Results: In 133 patients with Bars, 10 (7%) patients (mean age = 39 ± 11 years; nine males) were identified with a previous ventricular fibrillation/ventricular tachycardia episode (n = 8) or requiring cardio-pulmonary resuscitation (n = 2). None of these patients had a prior history of syncope before their SCA event. Only two (20%) patients reported a history of palpitations or dizziness. None had apneic breathing and three (30%) patients had a family history of SCA. From their ECGs, a spontaneous pattern was only found in one (10%) of these patients. Further, 10% of patients had fQRS, 17% had late potentials on SAECG, 20% had deep S waves in lead I, and 10% had an ER pattern in the peripheral leads. No significant differences were observed in the non-SCA group.

Conclusion: The majority of BrS patients with previous aborted SCA events did not have a spontaneous type I and/or prior history of syncope. Conventional and newer markers of risk appear to only have limited ability to predict SCA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/pace.13587DOI Listing
February 2019

Determinants of new wavefront locations in cholinergic atrial fibrillation.

Europace 2018 Nov;20(suppl_3):iii3-iii15

LIRYC Electrophysiology and Heart Modeling Institute, Bordeaux Fondation, Avenue du Haut-Lévèque, Pessac, France.

Aims: Atrial fibrillation (AF) wavefront dynamics are complex and difficult to interpret, contributing to uncertainty about the mechanisms that maintain AF. We aimed to investigate the interplay between rotors, wavelets, and focal sources during fibrillation.

Methods And Results: Arrhythmia wavefront dynamics were analysed for four optically mapped canine cholinergic AF preparations. A bilayer computer model was tuned to experimental preparations, and varied to have (i) fibrosis in both layers or the epicardium only, (ii) different spatial acetylcholine distributions, (iii) different intrinsic action potential duration between layers, and (iv) varied interlayer connectivity. Phase singularities (PSs) were identified and tracked over time to identify rotational drivers. New focal wavefronts were identified using phase contours. Phase singularity density and new wavefront locations were calculated during AF. There was a single dominant mechanism for sustaining AF in each of the preparations, either a rotational driver or repetitive new focal wavefronts. High-density PS sites existed preferentially around the pulmonary vein junctions. Three of the four preparations exhibited stable preferential sites of new wavefronts. Computational simulations predict that only a small number of connections are functionally important in sustaining AF, with new wavefront locations determined by the interplay between fibrosis distribution, acetylcholine concentration, and heterogeneity in repolarization within layers.

Conclusion: We were able to identify preferential sites of new wavefront initiation and rotational activity, in order to determine the mechanisms sustaining AF. Electrical measurements should be interpreted differently according to whether they are endocardial or epicardial recordings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/europace/euy235DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6251188PMC
November 2018

Rethinking multiscale cardiac electrophysiology with machine learning and predictive modelling.

Comput Biol Med 2019 01 18;104:339-351. Epub 2018 Oct 18.

ElectroCardioMaths Group, Imperial College Centre for Cardiac Engineering, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, UK.

We review some of the latest approaches to analysing cardiac electrophysiology data using machine learning and predictive modelling. Cardiac arrhythmias, particularly atrial fibrillation, are a major global healthcare challenge. Treatment is often through catheter ablation, which involves the targeted localised destruction of regions of the myocardium responsible for initiating or perpetuating the arrhythmia. Ablation targets are either anatomically defined, or identified based on their functional properties as determined through the analysis of contact intracardiac electrograms acquired with increasing spatial density by modern electroanatomic mapping systems. While numerous quantitative approaches have been investigated over the past decades for identifying these critical curative sites, few have provided a reliable and reproducible advance in success rates. Machine learning techniques, including recent deep-learning approaches, offer a potential route to gaining new insight from this wealth of highly complex spatio-temporal information that existing methods struggle to analyse. Coupled with predictive modelling, these techniques offer exciting opportunities to advance the field and produce more accurate diagnoses and robust personalised treatment. We outline some of these methods and illustrate their use in making predictions from the contact electrogram and augmenting predictive modelling tools, both by more rapidly predicting future states of the system and by inferring the parameters of these models from experimental observations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2018.10.015DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334203PMC
January 2019

Immunopharmacology of Post-Myocardial Infarction and Heart Failure Medications.

J Clin Med 2018 Oct 31;7(11). Epub 2018 Oct 31.

National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.

The immune system responds to acute tissue damage after myocardial infarction (MI) and orchestrates healing and recovery of the heart. However, excessive inflammation may lead to additional tissue damage and fibrosis and exacerbate subsequent functional impairment, leading to heart failure. The appreciation of the immune system as a crucial factor after MI has led to a surge of clinical trials investigating the potential benefits of immunomodulatory agents previously used in hyper-inflammatory conditions, such as autoimmune disease. While the major goal of routine post-MI pharmacotherapy is to support heart function by ensuring appropriate blood pressure and cardiac output to meet the demands of the body, several drug classes also affect a range of immunological pathways and modulate the post-MI immune response, which is crucial to take into account when designing future immunomodulatory trials. This review outlines how routine post-MI pharmacotherapy affects the immune response and may thus influence post-MI outcomes and development towards heart failure. Current key drug classes are discussed, including platelet inhibitors, statins, β-blockers, and renin⁻angiotensin⁻aldosterone inhibitors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/jcm7110403DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6262592PMC
October 2018

Mechanisms of sex differences in atrial fibrillation: role of hormones and differences in electrophysiology, structure, function, and remodelling.

Europace 2019 Mar;21(3):366-376

Department of Cardiology, Electrophysiology Unit, Hacettepe University, Ankara, Turkey.

Atrial fibrillation (AF) is the clinically most prevalent rhythm disorder with large impact on quality of life and increased risk for hospitalizations and mortality in both men and women. In recent years, knowledge regarding epidemiology, risk factors, and patho-physiological mechanisms of AF has greatly increased. Sex differences have been identified in the prevalence, clinical presentation, associated comorbidities, and therapy outcomes of AF. Although it is known that age-related prevalence of AF is lower in women than in men, women have worse and often atypical symptoms and worse quality of life as well as a higher risk for adverse events such as stroke and death associated with AF. In this review, we evaluate what is known about sex differences in AF mechanisms-covering structural, electrophysiological, and hormonal factors-and underscore areas of knowledge gaps for future studies. Increasing our understanding of mechanisms accounting for these sex differences in AF is important both for prognostic purposes and the optimization of (targeted, mechanism-based, and sex-specific) therapeutic approaches.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/europace/euy215DOI Listing
March 2019