Publications by authors named "Friedhelm Hildebrandt"

295 Publications

Ttc30a affects tubulin modifications in a model for ciliary chondrodysplasia with polycystic kidney disease.

Proc Natl Acad Sci U S A 2021 09;118(39)

Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland;

Skeletal ciliopathies (e.g., Jeune syndrome, short rib polydactyly syndrome, and Sensenbrenner syndrome) are frequently associated with nephronophthisis-like cystic kidney disease and other organ manifestations. Despite recent progress in genetic mapping of causative loci, a common molecular mechanism of cartilage defects and cystic kidneys has remained elusive. Targeting two ciliary chondrodysplasia loci ( and ) by CRISPR/Cas9 mutagenesis, we established models for skeletal ciliopathies in Froglets exhibited severe limb deformities, polydactyly, and cystic kidneys, closely matching the phenotype of affected patients. A data mining-based in silico screen found to be related to known skeletal ciliopathy genes. CRISPR/Cas9 targeting replicated limb malformations and renal cysts identical to the models of established disease genes. Loss of Ttc30a impaired embryonic renal excretion and ciliogenesis because of altered posttranslational tubulin acetylation, glycylation, and defective axoneme compartmentalization. transcripts are enriched in chondrocytes and osteocytes of single-cell RNA-sequenced embryonic mouse limbs. We identify TTC30A/B as an essential node in the network of ciliary chondrodysplasia and nephronophthisis-like disease proteins and suggest that tubulin modifications and cilia segmentation contribute to skeletal and renal ciliopathy manifestations of ciliopathies in a cell type-specific manner. These findings have implications for potential therapeutic strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2106770118DOI Listing
September 2021

A truncating NRIP1 variant in an Arabic family with congenital anomalies of the kidneys and urinary tract.

Am J Med Genet A 2021 Sep 15. Epub 2021 Sep 15.

Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the most common cause of early-onset chronic kidney disease. In a previous study, we identified a heterozygous truncating variant in nuclear receptor-interacting protein 1 (NRIP1) as CAKUT causing via dysregulation of retinoic acid signaling. This large family remains the only family with NRIP1 variant reported so far. Here, we describe one additional CAKUT family with a truncating variant in NRIP1. By whole-exome sequencing, we identified one heterozygous frameshift variant (p.Asn676Lysfs*27) in an isolated CAKUT patient with bilateral hydroureteronephrosis and right grade V vesicoureteral reflux (VUR) and in the affected father with left renal hypoplasia. The variant is present twice in a heterozygous state in the gnomAD database of 125,000 control individuals. We report the second CAKUT family with a truncating variant in NRIP1, confirming that loss-of-function mutations in NRIP1 are a novel monogenic cause of human autosomal dominant CAKUT.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.62502DOI Listing
September 2021

Cystin genetic variants cause autosomal recessive polycystic kidney disease associated with altered Myc expression.

Sci Rep 2021 Sep 14;11(1):18274. Epub 2021 Sep 14.

Center for Translational Research, Children's National Research Institute, 111 Michigan Ave NW, Washington, DC, 20010, USA.

Mutation of the Cys1 gene underlies the renal cystic disease in the Cys1 (cpk) mouse that phenocopies human autosomal recessive polycystic kidney disease (ARPKD). Cystin, the protein product of Cys1, is expressed in the primary apical cilia of renal ductal epithelial cells. In previous studies, we showed that cystin regulates Myc expression via interaction with the tumor suppressor, necdin. Here, we demonstrate rescue of the cpk renal phenotype by kidney-specific expression of a cystin-GFP fusion protein encoded by a transgene integrated into the Rosa26 locus. In addition, we show that expression of the cystin-GFP fusion protein in collecting duct cells down-regulates expression of Myc in cpk kidneys. Finally, we report the first human patient with an ARPKD phenotype due to homozygosity for a deleterious splicing variant in CYS1. These findings suggest that mutations in Cys1/CYS1 cause an ARPKD phenotype in mouse and human, respectively, and that the renal cystic phenotype in the mouse is driven by overexpression of the Myc proto-oncogene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-021-97046-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440558PMC
September 2021

Whole exome sequencing identifies FOXL2, FOXA2 and FOXA3 as candidate genes for monogenic congenital anomalies of the kidneys and urinary tract.

Nephrol Dial Transplant 2021 Sep 2. Epub 2021 Sep 2.

Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.

Background: Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the most common cause of chronic kidney disease in the first three decades of life. Variants in four Forkhead box (FOX) transcription factors have been associated with CAKUT. We hypothesized that other FOX genes, if highly expressed in developing kidney, may also represent monogenic causes of CAKUT.

Methods: We here performed whole exome sequencing (WES) in 541 families with CAKUT and generated 4 lists of CAKUT candidate genes: A) 36 FOX genes showing high expression during renal development, B) 4 FOX genes known to cause CAKUT to validate list A; C) 80 genes that we identified as unique potential novel CAKUT candidate genes when performing WES in 541 CAKUT families, and D) 175 genes identified from WES as multiple potential novel CAKUT candidate genes.

Results: To prioritize potential novel CAKUT candidates in FOX gene family, we overlapped 36 FOX genes (list A) with list C and D of WES-derived CAKUT candidates. Intersection with list C, identified a de novo FOXL2 in-frame deletion in a patient with eyelid abnormalities and ureteropelvic junction obstruction, and a homozygous FOXA2 missense variant in a patient with horseshoe kidney. Intersection with list D, identified a heterozygous FOXA3 missense variant in a CAKUT family with multiple affected individuals.

Conclusion: We hereby identified FOXL2, FOXA2 and FOXA3 as novel monogenic candidate genes of CAKUT, supporting the utility of a paralog-based approach to discover mutated genes associated with human disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ndt/gfab253DOI Listing
September 2021

Exome survey of individuals affected by VATER/VACTERL with renal phenotypes identifies phenocopies and novel candidate genes.

Am J Med Genet A 2021 Aug 2. Epub 2021 Aug 2.

Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

The acronym VATER/VACTERL refers to the rare nonrandom association of the following component features (CFs): vertebral defects (V), anorectal malformations (ARM) (A), cardiac anomalies (C), tracheoesophageal fistula with or without esophageal atresia (TE), renal malformations (R), and limb anomalies (L). For the clinical diagnosis, the presence of at least three CFs is required, individuals presenting with only two CFs have been categorized as VATER/VACTERL-like. The majority of VATER/VACTERL individuals displays a renal phenotype. Hitherto, variants in FGF8, FOXF1, HOXD13, LPP, TRAP1, PTEN, and ZIC3 have been associated with the VATER/VACTERL association; however, large-scale re-sequencing could only confirm TRAP1 and ZIC3 as VATER/VACTERL disease genes, both associated with a renal phenotype. In this study, we performed exome sequencing in 21 individuals and their families with a renal VATER/VACTERL or VATER/VACTERL-like phenotype to identify potentially novel genetic causes. Exome analysis identified biallelic and X-chromosomal hemizygous potentially pathogenic variants in six individuals (29%) in B9D1, FREM1, ZNF157, SP8, ACOT9, and TTLL11, respectively. The online tool GeneMatcher revealed another individual with a variant in ZNF157. Our study suggests six biallelic and X-chromosomal hemizygous VATER/VACTERL disease genes implicating all six genes in the expression of human renal malformations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.62447DOI Listing
August 2021

A discarded synonymous variant in NPHP3 explains nephronophthisis and congenital hepatic fibrosis in several families.

Hum Mutat 2021 Oct 26;42(10):1221-1228. Epub 2021 Jul 26.

Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.

Half of patients with a ciliopathy syndrome remain unsolved after initial analysis of whole exome sequencing (WES) data, highlighting the need for improved variant filtering and annotation. By candidate gene curation of WES data, combined with homozygosity mapping, we detected a homozygous predicted synonymous allele in NPHP3 in two children with hepatorenal fibrocystic disease from a consanguineous family. Analyses on patient-derived RNA shows activation of a cryptic mid-exon splice donor leading to frameshift. Remarkably, the same rare variant was detected in four additional families with hepatorenal disease from UK, US, and Saudi patient cohorts and in addition, another synonymous NPHP3 variant was identified in an unsolved case from the Genomics England 100,000 Genomes data set. We conclude that synonymous NPHP3 variants, not reported before and discarded by pathogenicity pipelines, solved several families with a ciliopathy syndrome. These findings prompt careful reassessment of synonymous variants, especially if they are rare and located in candidate genes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.24251DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434971PMC
October 2021

Immunological Impact of a Gluten-Free Dairy-Free Diet in Children With Kidney Disease: A Feasibility Study.

Front Immunol 2021 2;12:624821. Epub 2021 Jun 2.

Renal Division, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States.

Kidney disease affects 10% of the world population and is associated with increased mortality. Steroid-resistant nephrotic syndrome (SRNS) is a leading cause of end-stage kidney disease in children, often failing standard immunosuppression. Here, we report the results of a prospective study to investigate the immunological impact and safety of a gluten-free and dairy-free (GF/DF) diet in children with SRNS. The study was organized as a four-week summer camp implementing a strict GF/DF diet with prospective collection of blood, urine and stool in addition to whole exome sequencing WES of DNA of participants. Using flow cytometry, proteomic assays and microbiome metagenomics, we show that GF/DF diet had a major anti-inflammatory effect in all participants both at the protein and cellular level with 4-fold increase in T regulatory/T helper 17 cells ratio and the promotion of a favorable regulatory gut microbiota. Overall, GF/DF can have a significant anti-inflammatory effect in children with SRNS and further trials are warranted to investigate this potential dietary intervention in children with SRNS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2021.624821DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8208082PMC
September 2021

Homozygous WNT9B variants in two families with bilateral renal agenesis/hypoplasia/dysplasia.

Am J Med Genet A 2021 10 19;185(10):3005-3011. Epub 2021 Jun 19.

Children's Hospital of Eastern Ontario (CHEO) Research Institute, University of Ottawa, Ottawa, Canada.

WNT9B plays a key role in the development of the mammalian urogenital system. It is essential for the induction of mesonephric and metanephric tubules, the regulation of renal tubule morphogenesis, and the regulation of renal progenitor cell expansion and differentiation. To our knowledge, WNT9B has not been associated with renal defects in humans; however, WNT9B mice have renal agenesis/hypoplasia and reproductive tract abnormalities. We report four individuals from two unrelated consanguineous families with bilateral renal agenesis/hypoplasia/dysplasia and homozygous variants in WNT9B. The proband from Family 1 has bilateral renal cystic dysplasia and chronic kidney disease. He has two deceased siblings who presented with bilateral renal hypoplasia/agenesis. The three affected family members were homozygous for a missense variant in WNT9B (NM_003396.2: c.949G>A/p.(Gly317Arg)). The proband from Family 2 has renal hypoplasia/dysplasia, chronic kidney disease, and is homozygous for a nonsense variant in WNT9B (NM_003396.2: c.11dupC/p.(Pro5Alafs*52)). Two of her siblings died in the neonatal period, one confirmed to be in the context of oligohydramnios. The proband's unaffected brother is also homozygous for the nonsense variant in WNT9B, suggesting nonpenetrance. We propose a novel association of WNT9B and renal anomalies in humans. Further study is needed to delineate the contribution of WNT9B to genitourinary anomalies in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.62398DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8446303PMC
October 2021

Multisystem inflammation and susceptibility to viral infections in human ZNFX1 deficiency.

J Allergy Clin Immunol 2021 08 17;148(2):381-393. Epub 2021 Apr 17.

Division of Immunology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.

Background: Recognition of viral nucleic acids is one of the primary triggers for a type I interferon-mediated antiviral immune response. Inborn errors of type I interferon immunity can be associated with increased inflammation and/or increased susceptibility to viral infections as a result of dysbalanced interferon production. NFX1-type zinc finger-containing 1 (ZNFX1) is an interferon-stimulated double-stranded RNA sensor that restricts the replication of RNA viruses in mice. The role of ZNFX1 in the human immune response is not known.

Objective: We studied 15 patients from 8 families with an autosomal recessive immunodeficiency characterized by severe infections by both RNA and DNA viruses and virally triggered inflammatory episodes with hemophagocytic lymphohistiocytosis-like disease, early-onset seizures, and renal and lung disease.

Methods: Whole exome sequencing was performed on 13 patients from 8 families. We investigated the transcriptome, posttranscriptional regulation of interferon-stimulated genes (ISGs) and predisposition to viral infections in primary cells from patients and controls stimulated with synthetic double-stranded nucleic acids.

Results: Deleterious homozygous and compound heterozygous ZNFX1 variants were identified in all 13 patients. Stimulation of patient-derived primary cells with synthetic double-stranded nucleic acids was associated with a deregulated pattern of expression of ISGs and alterations in the half-life of the mRNA of ISGs and also associated with poorer clearance of viral infections by monocytes.

Conclusion: ZNFX1 is an important regulator of the response to double-stranded nucleic acids stimuli following viral infections. ZNFX1 deficiency predisposes to severe viral infections and a multisystem inflammatory disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2021.03.045DOI Listing
August 2021

A Rare Autosomal Dominant Variant in Regulator of Calcineurin Type 1 () Gene Confers Enhanced Calcineurin Activity and May Cause FSGS.

J Am Soc Nephrol 2021 Apr 16. Epub 2021 Apr 16.

Division of Nephrology, Department of Pediatrics, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina

Background: Podocyte dysfunction is the main pathologic mechanism driving the development of FSGS and other morphologic types of steroid-resistant nephrotic syndrome (SRNS). Despite significant progress, the genetic causes of most cases of SRNS have yet to be identified.

Methods: Whole-genome sequencing was performed on 320 individuals from 201 families with familial and sporadic NS/FSGS with no pathogenic mutations in any known NS/FSGS genes.

Results: Two variants in the gene encoding regulator of calcineurin type 1 () segregate with disease in two families with autosomal dominant FSGS/SRNS. , loss of reduced human podocyte viability due to increased calcineurin activity. Cells expressing mutant displayed increased calcineurin activity and NFAT activation that resulted in increased susceptibility to apoptosis compared with wild-type . Treatment with GSK-3 inhibitors ameliorated this elevated calcineurin activity, suggesting the mutation alters the balance of RCAN1 regulation by GSK-3, resulting in dysregulated calcineurin activity and apoptosis.

Conclusions: These data suggest mutations in can cause autosomal dominant FSGS. Despite the widespread use of calcineurin inhibitors in the treatment of NS, genetic mutations in a direct regulator of calcineurin have not been implicated in the etiology of NS/FSGS before this report. The findings highlight the therapeutic potential of targeting RCAN1 regulatory molecules, such as GSK-3, in the treatment of FSGS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1681/ASN.2020081234DOI Listing
April 2021

Recessive Mutations in as a Candidate of Monogenic Nephrotic Syndrome.

Kidney Int Rep 2021 Feb 10;6(2):472-483. Epub 2020 Nov 10.

Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Introduction: Most of the approximately 60 genes that if mutated cause steroid-resistant nephrotic syndrome (SRNS) are highly expressed in the glomerular podocyte, rendering SRNS a "podocytopathy."

Methods: We performed whole-exome sequencing (WES) in 1200 nephrotic syndrome (NS) patients.

Results: We discovered homozygous truncating and homozygous missense mutation in (synaptopodin-2) (p.Lys1124∗ and p.Ala1134Thr) in 2 patients with childhood-onset NS. We found SYNPO2 expression in both podocytes and mesangial cells; however, notably, immunofluorescence staining of adult human and rat kidney cryosections indicated that SYNPO2 is localized mainly in mesangial cells. Subcellular localization studies reveal that in these cells SYNPO2 partially co-localizes with α-actinin and filamin A-containing F-actin filaments. Upon transfection in mesangial cells or podocytes, EGFP-SYNPO2 co-localized with α-actinin-4, which gene is mutated in autosomal dominant SRNS in humans. SYNPO2 overexpression increases mesangial cell migration rate (MMR), whereas shRNA knockdown reduces MMR. Decreased MMR was rescued by transfection of wild-type mouse cDNA but only partially by cDNA representing mutations from the NS patients. The increased mesangial cell migration rate (MMR) by SYNPO2 overexpression was inhibited by ARP complex inhibitor CK666. shRNA knockdown in podocytes decreased active Rac1, which was rescued by transfection of wild-type cDNA but not by cDNA representing any of the 2 mutant variants.

Conclusion: We show that SYNPO2 variants may lead to Rac1-ARP3 dysregulation, and may play a role in the pathogenesis of nephrotic syndrome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ekir.2020.10.040DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7879128PMC
February 2021

Generation of Monogenic Candidate Genes for Human Nephrotic Syndrome Using 3 Independent Approaches.

Kidney Int Rep 2021 Feb 3;6(2):460-471. Epub 2020 Dec 3.

Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Introduction: Steroid-resistant nephrotic syndrome (SRNS) is the second most common cause of chronic kidney disease during childhood. Identification of 63 monogenic human genes has delineated 12 distinct pathogenic pathways.

Methods: Here, we generated 2 independent sets of nephrotic syndrome (NS) candidate genes to augment the discovery of additional monogenic causes based on whole-exome sequencing (WES) data from 1382 families with NS.

Results: We first identified 63 known monogenic causes of NS in mice from public databases and scientific publications, and 12 of these genes overlapped with the 63 known human monogenic SRNS genes. Second, we used a set of 64 genes that are regulated by the transcription factor Wilms tumor 1 (WT1), which causes SRNS if mutated. Thirteen of these WT1-regulated genes overlapped with human or murine NS genes. Finally, we overlapped these lists of murine and WT1 candidate genes with our list of 120 candidate genes generated from WES in 1382 NS families, to identify novel candidate genes for monogenic human SRNS. Using this approach, we identified 7 overlapping genes, of which 3 genes were shared by all datasets, including . We show that loss-of-function of leads to decreased CDC42 activity and reduced podocyte migration rate, both of which are rescued by overexpression of wild-type complementary DNA (cDNA), but not by cDNA representing the patient mutation.

Conclusion: Thus, we identified 3 novel candidate genes for human SRNS using 3 independent, nonoverlapping hypotheses, and generated functional evidence for as a novel potential monogenic cause of NS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ekir.2020.11.013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7879125PMC
February 2021

Copy Number Variant Analysis and Genome-wide Association Study Identify Loci with Large Effect for Vesicoureteral Reflux.

J Am Soc Nephrol 2021 Feb 17. Epub 2021 Feb 17.

Department of Clinical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, Ireland.

Background: Vesicoureteral reflux (VUR) is a common, familial genitourinary disorder, and a major cause of pediatric urinary tract infection (UTI) and kidney failure. The genetic basis of VUR is not well understood.

Methods: A diagnostic analysis sought rare, pathogenic copy number variant (CNV) disorders among 1737 patients with VUR. A GWAS was performed in 1395 patients and 5366 controls, of European ancestry.

Results: Altogether, 3% of VUR patients harbored an undiagnosed rare CNV disorder, such as the 1q21.1, 16p11.2, 22q11.21, and triple X syndromes ((OR, 3.12; 95% CI, 2.10 to 4.54; =6.35×10) The GWAS identified three study-wide significant and five suggestive loci with large effects (ORs, 1.41-6.9), containing canonical developmental genes expressed in the developing urinary tract ( and ). In particular, 3.3% of VUR patients were homozygous for an intronic variant in (rs13013890; OR, 3.65; 95% CI, 2.39 to 5.56; =1.86×10). This locus was associated with multiple genitourinary phenotypes in the UK Biobank and eMERGE studies. Analysis of mutant mice confirmed the role of Wnt5a signaling in bladder and ureteric morphogenesis.

Conclusions: These data demonstrate the genetic heterogeneity of VUR. Altogether, 6% of patients with VUR harbored a rare CNV or a common variant genotype conferring an OR >3. Identification of these genetic risk factors has multiple implications for clinical care and for analysis of outcomes in VUR.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1681/ASN.2020050681DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8017540PMC
February 2021

Mutations in Are a Novel Cause of Galloway-Mowat Syndrome.

J Am Soc Nephrol 2021 03 16;32(3):580-596. Epub 2021 Feb 16.

Institute of Human Genetics, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.

Background: Galloway-Mowat syndrome (GAMOS) is characterized by neurodevelopmental defects and a progressive nephropathy, which typically manifests as steroid-resistant nephrotic syndrome. The prognosis of GAMOS is poor, and the majority of children progress to renal failure. The discovery of monogenic causes of GAMOS has uncovered molecular pathways involved in the pathogenesis of disease.

Methods: Homozygosity mapping, whole-exome sequencing, and linkage analysis were used to identify mutations in four families with a GAMOS-like phenotype, and high-throughput PCR technology was applied to 91 individuals with GAMOS and 816 individuals with isolated nephrotic syndrome. and studies determined the functional significance of the mutations identified.

Results: Three biallelic variants of the transcriptional regulator were detected in six families with proteinuric kidney disease. Four families with a variant in the protein's zinc-finger (ZNF) domain have additional GAMOS-like features, including brain anomalies, cardiac defects, and skeletal defects. All variants destabilize the PRDM15 protein, and the ZNF variant additionally interferes with transcriptional activation. Morpholino oligonucleotide-mediated knockdown of Prdm15 in embryos disrupted pronephric development. Human wild-type RNA rescued the disruption, but the three variants did not. Finally, CRISPR-mediated knockout of in human podocytes led to dysregulation of several renal developmental genes.

Conclusions: Variants in can cause either isolated nephrotic syndrome or a GAMOS-type syndrome on an allelic basis. PRDM15 regulates multiple developmental kidney genes, and is likely to play an essential role in renal development in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1681/ASN.2020040490DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7920168PMC
March 2021

A recurrent, homozygous EMC10 frameshift variant is associated with a syndrome of developmental delay with variable seizures and dysmorphic features.

Genet Med 2021 06 2;23(6):1158-1162. Epub 2021 Feb 2.

Centogene AG, Rostock, Germany.

Purpose: The endoplasmic reticulum membrane complex (EMC) is a highly conserved, multifunctional 10-protein complex related to membrane protein biology. In seven families, we identified 13 individuals with highly overlapping phenotypes who harbor a single identical homozygous frameshift variant in EMC10.

Methods: Using exome, genome, and Sanger sequencing, a recurrent frameshift EMC10 variant was identified in affected individuals in an international cohort of consanguineous families. Multiple families were independently identified and connected via Matchmaker Exchange and internal databases. We assessed the effect of the frameshift variant on EMC10 RNA and protein expression and evaluated EMC10 expression in normal human brain tissue using immunohistochemistry.

Results: A homozygous variant EMC10 c.287delG (Refseq NM_206538.3, p.Gly96Alafs*9) segregated with affected individuals in each family, who exhibited a phenotypic spectrum of intellectual disability (ID) and global developmental delay (GDD), variable seizures and variable dysmorphic features (elongated face, curly hair, cubitus valgus, and arachnodactyly). The variant arose on two founder haplotypes and results in significantly reduced EMC10 RNA expression and an unstable truncated EMC10 protein.

Conclusion: We propose that a homozygous loss-of-function variant in EMC10 causes a novel syndromic neurodevelopmental phenotype. Remarkably, the recurrent variant is likely the result of a hypermutable site and arose on distinct founder haplotypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-021-01097-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187145PMC
June 2021

Recessive variants impair actin remodeling and cause glomerulopathy in humans and mice.

Sci Adv 2021 Jan 1;7(1). Epub 2021 Jan 1.

Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.

Nephrotic syndrome (NS) is a leading cause of chronic kidney disease. We found recessive variants in two families with early-onset NS by exome sequencing. Overexpression of wild-type (WT) , but not cDNA constructs bearing patient variants, increased active CDC42 and promoted filopodia and podosome formation. Pharmacologic inhibition of CDC42 or its effectors, formin proteins, reduced NOS1AP-induced filopodia formation. knockdown reduced podocyte migration rate (PMR), which was rescued by overexpression of WT but not by constructs bearing patient variants. PMR in knockdown podocytes was also rescued by constitutively active or the formin Modeling a patient variant in knock-in human kidney organoids revealed malformed glomeruli with increased apoptosis. mice recapitulated the human phenotype, exhibiting proteinuria, foot process effacement, and glomerulosclerosis. These findings demonstrate that recessive variants impair CDC42/DIAPH-dependent actin remodeling, cause aberrant organoid glomerulogenesis, and lead to a glomerulopathy in humans and mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.abe1386DOI Listing
January 2021

De novo TRIM8 variants impair its protein localization to nuclear bodies and cause developmental delay, epilepsy, and focal segmental glomerulosclerosis.

Am J Hum Genet 2021 02 27;108(2):357-367. Epub 2021 Jan 27.

Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, NC 27710, USA.

Focal segmental glomerulosclerosis (FSGS) is the main pathology underlying steroid-resistant nephrotic syndrome (SRNS) and a leading cause of chronic kidney disease. Monogenic forms of pediatric SRNS are predominantly caused by recessive mutations, while the contribution of de novo variants (DNVs) to this trait is poorly understood. Using exome sequencing (ES) in a proband with FSGS/SRNS, developmental delay, and epilepsy, we discovered a nonsense DNV in TRIM8, which encodes the E3 ubiquitin ligase tripartite motif containing 8. To establish whether TRIM8 variants represent a cause of FSGS, we aggregated exome/genome-sequencing data for 2,501 pediatric FSGS/SRNS-affected individuals and 48,556 control subjects, detecting eight heterozygous TRIM8 truncating variants in affected subjects but none in control subjects (p = 3.28 × 10). In all six cases with available parental DNA, we demonstrated de novo inheritance (p = 2.21 × 10). Reverse phenotyping revealed neurodevelopmental disease in all eight families. We next analyzed ES from 9,067 individuals with epilepsy, yielding three additional families with truncating TRIM8 variants. Clinical review revealed FSGS in all. All TRIM8 variants cause protein truncation clustering within the last exon between residues 390 and 487 of the 551 amino acid protein, indicating a correlation between this syndrome and loss of the TRIM8 C-terminal region. Wild-type TRIM8 overexpressed in immortalized human podocytes and neuronal cells localized to nuclear bodies, while constructs harboring patient-specific variants mislocalized diffusely to the nucleoplasm. Co-localization studies demonstrated that Gemini and Cajal bodies frequently abut a TRIM8 nuclear body. Truncating TRIM8 DNVs cause a neuro-renal syndrome via aberrant TRIM8 localization, implicating nuclear bodies in FSGS and developmental brain disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.01.008DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895901PMC
February 2021

DAAM2 Variants Cause Nephrotic Syndrome via Actin Dysregulation.

Am J Hum Genet 2020 12 23;107(6):1113-1128. Epub 2020 Nov 23.

Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.

The discovery of >60 monogenic causes of nephrotic syndrome (NS) has revealed a central role for the actin regulators RhoA/Rac1/Cdc42 and their effectors, including the formin INF2. By whole-exome sequencing (WES), we here discovered bi-allelic variants in the formin DAAM2 in four unrelated families with steroid-resistant NS. We show that DAAM2 localizes to the cytoplasm in podocytes and in kidney sections. Further, the variants impair DAAM2-dependent actin remodeling processes: wild-type DAAM2 cDNA, but not cDNA representing missense variants found in individuals with NS, rescued reduced podocyte migration rate (PMR) and restored reduced filopodia formation in shRNA-induced DAAM2-knockdown podocytes. Filopodia restoration was also induced by the formin-activating molecule IMM-01. DAAM2 also co-localizes and co-immunoprecipitates with INF2, which is intriguing since variants in both formins cause NS. Using in vitro bulk and TIRF microscopy assays, we find that DAAM2 variants alter actin assembly activities of the formin. In a Xenopus daam2-CRISPR knockout model, we demonstrate actin dysregulation in vivo and glomerular maldevelopment that is rescued by WT-DAAM2 mRNA. We conclude that DAAM2 variants are a likely cause of monogenic human SRNS due to actin dysregulation in podocytes. Further, we provide evidence that DAAM2-associated SRNS may be amenable to treatment using actin regulating compounds.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2020.11.008DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820625PMC
December 2020

Beyond the tubule: pathological variants of , encoding the megalin receptor, result in glomerular loss and early progressive chronic kidney disease.

Am J Physiol Renal Physiol 2020 12 26;319(6):F988-F999. Epub 2020 Oct 26.

Department of Biomedicine, Aarhus University, Aarhus, Denmark.

Pathogenic variants in the gene, encoding the multiligand receptor megalin, cause a rare autosomal recessive syndrome: Donnai-Barrow/Facio-Oculo-Acoustico-Renal (DB/FOAR) syndrome. Because of the rarity of the syndrome, the long-term consequences of the tubulopathy on human renal health have been difficult to ascertain, and the human clinical condition has hitherto been characterized as a benign tubular condition with asymptomatic low-molecular-weight proteinuria. We investigated renal function and morphology in a murine model of DB/FOAR syndrome and in patients with DB/FOAR. We analyzed glomerular filtration rate in mice by FITC-inulin clearance and clinically characterized six families, including nine patients with DB/FOAR and nine family members. Urine samples from patients were analyzed by Western blot analysis and biopsy materials were analyzed by histology. In the mouse model, we used histological methods to assess nephrogenesis and postnatal renal structure and contrast-enhanced magnetic resonance imaging to assess glomerular number. In megalin-deficient mice, we found a lower glomerular filtration rate and an increase in the abundance of injury markers, such as kidney injury molecule-1 and -acetyl-β-d-glucosaminidase. Renal injury was validated in patients, who presented with increased urinary kidney injury molecule-1, classical markers of chronic kidney disease, and glomerular proteinuria early in life. Megalin-deficient mice had normal nephrogenesis, but they had 19% fewer nephrons in early adulthood and an increased fraction of nephrons with disconnected glomerulotubular junction. In conclusion, megalin dysfunction, as present in DB/FOAR syndrome, confers an increased risk of progression into chronic kidney disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00295.2020DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7792689PMC
December 2020

Mutations in transcription factor CP2-like 1 may cause a novel syndrome with distal renal tubulopathy in humans.

Nephrol Dial Transplant 2021 01;36(2):237-246

Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.

Background: An underlying monogenic cause of early-onset chronic kidney disease (CKD) can be detected in ∼20% of individuals. For many etiologies of CKD manifesting before 25 years of age, >200 monogenic causative genes have been identified to date, leading to the elucidation of mechanisms of renal pathogenesis.

Methods: In 51 families with echogenic kidneys and CKD, we performed whole-exome sequencing to identify novel monogenic causes of CKD.

Results: We discovered a homozygous truncating mutation in the transcription factor gene transcription factor CP2-like 1 (TFCP2L1) in an Arabic patient of consanguineous descent. The patient developed CKD by the age of 2 months and had episodes of severe hypochloremic, hyponatremic and hypokalemic alkalosis, seizures, developmental delay and hypotonia together with cataracts. We found that TFCP2L1 was localized throughout kidney development particularly in the distal nephron. Interestingly, TFCP2L1 induced the growth and development of renal tubules from rat mesenchymal cells. Conversely, the deletion of TFCP2L1 in mice was previously shown to lead to reduced expression of renal cell markers including ion transporters and cell identity proteins expressed in different segments of the distal nephron. TFCP2L1 localized to the nucleus in HEK293T cells only upon coexpression with its paralog upstream-binding protein 1 (UBP1). A TFCP2L1 mutant complementary DNA (cDNA) clone that represented the patient's mutation failed to form homo- and heterodimers with UBP1, an essential step for its transcriptional activity.

Conclusion: Here, we identified a loss-of-function TFCP2L1 mutation as a potential novel cause of CKD in childhood accompanied by a salt-losing tubulopathy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ndt/gfaa215DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7834595PMC
January 2021

Mutations of the Transcriptional Corepressor ZMYM2 Cause Syndromic Urinary Tract Malformations.

Am J Hum Genet 2020 10 4;107(4):727-742. Epub 2020 Sep 4.

Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT. Through collaboration, we identified in total 14 different heterozygous loss-of-function mutations in ZMYM2 in 15 unrelated families. Most mutations occurred de novo, indicating possible interference with reproductive function. Human disease features are replicated in X. tropicalis larvae with morpholino knockdowns, in which expression of truncated ZMYM2 proteins, based on individual mutations, failed to rescue renal and craniofacial defects. Moreover, heterozygous Zmym2-deficient mice recapitulated features of CAKUT with high penetrance. The ZMYM2 protein is a component of a transcriptional corepressor complex recently linked to the silencing of developmentally regulated endogenous retrovirus elements. Using protein-protein interaction assays, we show that ZMYM2 interacts with additional epigenetic silencing complexes, as well as confirming that it binds to FOXP1, a transcription factor that has also been linked to CAKUT. In summary, our findings establish that loss-of-function mutations of ZMYM2, and potentially that of other proteins in its interactome, as causes of human CAKUT, offering new routes for studying the pathogenesis of the disorder.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2020.08.013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536580PMC
October 2020

Loss of Anks6 leads to YAP deficiency and liver abnormalities.

Hum Mol Genet 2020 11;29(18):3064-3080

Division of Nephrology, Boston Children's Hospital, Boston, MA, USA.

ANKS6 is a ciliary protein that localizes to the proximal compartment of the primary cilium, where it regulates signaling. Mutations in the ANKS6 gene cause multiorgan ciliopathies in humans, which include laterality defects of the visceral organs, renal cysts as part of nephronophthisis and congenital hepatic fibrosis (CHF) in the liver. Although CHF together with liver ductal plate malformations are common features of several human ciliopathy syndromes, including nephronophthisis-related ciliopathies, the mechanism by which mutations in ciliary genes lead to bile duct developmental abnormalities is not understood. Here, we generated a knockout mouse model of Anks6 and show that ANKS6 function is required for bile duct morphogenesis and cholangiocyte differentiation. The loss of Anks6 causes ciliary abnormalities, ductal plate remodeling defects and periportal fibrosis in the liver. Our expression studies and biochemical analyses show that biliary abnormalities in Anks6-deficient livers result from the dysregulation of YAP transcriptional activity in the bile duct-lining epithelial cells. Mechanistically, our studies suggest, that ANKS6 antagonizes Hippo signaling in the liver during bile duct development by binding to Hippo pathway effector proteins YAP1, TAZ and TEAD4 and promoting their transcriptional activity. Together, this study reveals a novel function for ANKS6 in regulating Hippo signaling during organogenesis and provides mechanistic insights into the regulatory network controlling bile duct differentiation and morphogenesis during liver development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddaa197DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733532PMC
November 2020

Podocytopathies.

Nat Rev Dis Primers 2020 08 13;6(1):68. Epub 2020 Aug 13.

Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.

Podocytopathies are kidney diseases in which direct or indirect podocyte injury drives proteinuria or nephrotic syndrome. In children and young adults, genetic variants in >50 podocyte-expressed genes, syndromal non-podocyte-specific genes and phenocopies with other underlying genetic abnormalities cause podocytopathies associated with steroid-resistant nephrotic syndrome or severe proteinuria. A variety of genetic variants likely contribute to disease development. Among genes with non-Mendelian inheritance, variants in APOL1 have the largest effect size. In addition to genetic variants, environmental triggers such as immune-related, infection-related, toxic and haemodynamic factors and obesity are also important causes of podocyte injury and frequently combine to cause various degrees of proteinuria in children and adults. Typical manifestations on kidney biopsy are minimal change lesions and focal segmental glomerulosclerosis lesions. Standard treatment for primary podocytopathies manifesting with focal segmental glomerulosclerosis lesions includes glucocorticoids and other immunosuppressive drugs; individuals not responding with a resolution of proteinuria have a poor renal prognosis. Renin-angiotensin system antagonists help to control proteinuria and slow the progression of fibrosis. Symptomatic management may include the use of diuretics, statins, infection prophylaxis and anticoagulation. This Primer discusses a shift in paradigm from patient stratification based on kidney biopsy findings towards personalized management based on clinical, morphological and genetic data as well as pathophysiological understanding.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41572-020-0196-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162925PMC
August 2020

variants are associated with multiple congenital anomalies including ciliopathy phenotypes.

J Med Genet 2021 07 6;58(7):453-464. Epub 2020 Jul 6.

Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA

Background: Cilia are dynamic cellular extensions that generate and sense signals to orchestrate proper development and tissue homeostasis. They rely on the underlying polarisation of cells to participate in signalling. Cilia dysfunction is a well-known cause of several diseases that affect multiple organ systems including the kidneys, brain, heart, respiratory tract, skeleton and retina.

Methods: Among individuals from four unrelated families, we identified variants in ( that manifested in a variety of pathologies. In our proband, we also examined patient tissues. We depleted in frog embryos to generate a loss-of-function model. Finally, we tested the pathogenicity of patient variants through rescue experiments in the frog model.

Results: Patients with variants of were found to have a variety of phenotypes including cystic kidneys, nephrotic syndrome, hydrocephalus, limb abnormalities, congenital heart disease and craniofacial malformations. We also observed a loss of cilia in cystic kidney tissue of our proband. Knockdown of in embryos recapitulated many of these phenotypes and resulted in a loss of cilia in multiple tissues. Unlike introduction of wildtype in frog embryos depleted of introduction of patient variants was largely ineffective in restoring proper ciliation and tissue morphology in the kidney and brain suggesting that the variants were indeed detrimental to function.

Conclusion: These findings in both patient tissues and shed light on how mutations in may lead to tissue-specific manifestations of disease. DLG5 is essential for cilia and many of the patient phenotypes are in the ciliopathy spectrum.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2019-106805DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785698PMC
July 2021

Novel nephronophthisis-associated variants reveal functional importance of MAPKBP1 dimerization for centriolar recruitment.

Kidney Int 2020 10 4;98(4):958-969. Epub 2020 Jun 4.

Division of Nephrology, University Hospital Leipzig Medical Center, Leipzig, Germany. Electronic address:

Biallelic mutations in MAPKBP1 were recently associated with late-onset cilia-independent nephronophthisis. MAPKBP1 was found at mitotic spindle poles but could not be detected at primary cilia or centrosomes. Here, by identification and characterization of novel MAPKBP1 variants, we aimed at further investigating its role in health and disease. Genetic analysis was done by exome sequencing, homozygosity mapping, and a targeted kidney gene panel while coimmunoprecipitation was used to explore wild-type and mutant protein-protein interactions. Expression of MAPKBP1 in non-ciliated HeLa and ciliated inner medullary collecting duct cells enabled co-localization studies by fluorescence microscopy. By next generation sequencing, we identified two novel homozygous MAPKBP1 splice-site variants in patients with nephronophthisis-related chronic kidney disease. Splice-site analyses revealed truncation of C-terminal coiled-coil domains and patient-derived deletion constructs lost their ability to homodimerize and heterodimerize with paralogous WDR62. While wild-type MAPKBP1 exhibited centrosomal, basal body, and microtubule association, mutant proteins lost the latter and showed reduced recruitment to cell cycle dependent centriolar structures. Wild-type and mutant proteins had no reciprocal influence upon co-expression excluding dominant negative effects. Thus, MAPKBP1 appears to be a novel microtubule-binding protein with cell cycle dependent centriolar localization. Truncation of its coiled-coil domain is enough to abrogate its dimerization and results in severely disturbed intracellular localizations. Delineating the impact of impaired dimerization on cell cycle regulation and intracellular kidney signaling may provide new insights into common mechanisms of kidney degeneration. Thus, due to milder clinical presentation, MAPKBP1-associated nephronophthisis should be considered in adult patients with otherwise unexplained chronic kidney disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.kint.2020.05.027DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7690948PMC
October 2020

Phenotype expansion of heterozygous FOXC1 pathogenic variants toward involvement of congenital anomalies of the kidneys and urinary tract (CAKUT).

Genet Med 2020 10 1;22(10):1673-1681. Epub 2020 Jun 1.

Department of Pediatrics, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA.

Purpose: Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in childhood and adolescence. We aim to identify novel monogenic causes of CAKUT.

Methods: Exome sequencing was performed in 550 CAKUT-affected families.

Results: We discovered seven FOXC1 heterozygous likely pathogenic variants within eight CAKUT families. These variants are either never reported, or present in <5 alleles in the gnomAD database with ~141,456 controls. FOXC1 is a causal gene for Axenfeld-Rieger syndrome type 3 and anterior segment dysgenesis 3. Pathogenic variants in FOXC1 have not been detected in patients with CAKUT yet. Interestingly, mouse models for Foxc1 show severe CAKUT phenotypes with incomplete penetrance and variable expressivity. The FOXC1 variants are enriched in the CAKUT cohort compared with the control. Genotype-phenotype correlations showed that Axenfeld-Rieger syndrome or anterior segment dysgenesis can be caused by both truncating and missense pathogenic variants, and the missense variants are located at the forkhead domain. In contrast, for CAKUT, there is no truncating pathogenic variant, and all variants except one are located outside the forkhead domain.

Conclusion: We thereby expanded the phenotype of FOXC1 pathogenic variants toward involvement of CAKUT, which can potentially be explained by allelism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-020-0844-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8220407PMC
October 2020

ADCK4 Deficiency Destabilizes the Coenzyme Q Complex, Which Is Rescued by 2,4-Dihydroxybenzoic Acid Treatment.

J Am Soc Nephrol 2020 06 7;31(6):1191-1211. Epub 2020 May 7.

Departments of Pharmacology, Yonsei University College of Medicine, Seoul, Korea

Background: Mutations in (aarF domain containing kinase 4) generally manifest as steroid-resistant nephrotic syndrome and induce coenzyme Q (CoQ) deficiency. However, the molecular mechanisms underlying steroid-resistant nephrotic syndrome resulting from mutations are not well understood, largely because the function of ADCK4 remains unknown.

Methods: To elucidate the ADCK4's function in podocytes, we generated a podocyte-specific, -knockout mouse model and a human podocyte cell line featuring knockout of . These knockout mice and podocytes were then treated with 2,4-dihydroxybenzoic acid (2,4-diHB), a CoQ precursor analogue, or with a vehicle only. We also performed proteomic mass spectrometry analysis to further elucidate ADCK4's function.

Results: Absence of in mouse podocytes caused FSGS and albuminuria, recapitulating features of nephrotic syndrome caused by mutations. studies revealed that ADCK4-knockout podocytes had significantly reduced CoQ concentration, respiratory chain activity, and mitochondrial potential, and subsequently displayed an increase in the number of dysmorphic mitochondria. However, treatment of 3-month-old knockout mice or ADCK4-knockout cells with 2,4-diHB prevented the development of renal dysfunction and reversed mitochondrial dysfunction in podocytes. Moreover, ADCK4 interacted with mitochondrial proteins such as COQ5, as well as cytoplasmic proteins such as myosin and heat shock proteins. Thus, ADCK4 knockout decreased the COQ complex level, but overexpression of ADCK4 in ADCK4-knockout podocytes transfected with wild-type ADCK4 rescued the COQ5 level.

Conclusions: Our study shows that ADCK4 is required for CoQ biosynthesis and mitochondrial function in podocytes, and suggests that ADCK4 in podocytes stabilizes proteins in complex Q in podocytes. Our study also suggests a potential treatment strategy for nephrotic syndrome resulting from mutations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1681/ASN.2019070756DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7269352PMC
June 2020

PLCE1 regulates the migration, proliferation, and differentiation of podocytes.

Exp Mol Med 2020 04 1;52(4):594-603. Epub 2020 Apr 1.

Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea.

PLCE1 encodes phospholipase C epsilon, and its mutations cause recessive nephrotic syndrome. However, the mechanisms by which PLCE1 mutations result in defects associated with glomerular function are not clear. To address this, we investigated the function of PLCE1 in podocytes called glomerular epithelial cells, where the pathogenesis of nephrotic syndrome converges. PLCE1 colocalized with Rho GTPases in glomeruli. Further, it interacted with Rho GTPases through the pleckstrin homology domain and Ras GTP-binding domains 1/2. Knockdown or knockout of PLCE1 in podocytes resulted in decreased levels of GTP-bound Rac1 and Cdc42, but not those of RhoA, and caused a reduction in cell migration. PLCE1 interacted with NCK2 but not with NCK1. Similar to the PLCE1 knockout, NCK2 knockout resulted in decreased podocyte migration. Knockout of PLCE1 reduced the EGF-induced activation of ERK and cell proliferation in podocytes, whereas knockout of NCK2 did not affect proliferation. Further, the knockout of PLCE1 also resulted in decreased expression of podocyte markers, including NEPH1, NPHS1, WT1, and SYNPO, upon differentiation, but the knockout of NCK2 did not affect the expression of these markers. Therefore, our findings demonstrate that PLCE1 regulates Rho GTPase activity and cell migration through interacting with NCK2 and that PLCE1 also plays a role in the proliferation and differentiation of podocytes, regardless of the presence of NCK2.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s12276-020-0410-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7210307PMC
April 2020

Responsiveness of sphingosine phosphate lyase insufficiency syndrome to vitamin B6 cofactor supplementation.

J Inherit Metab Dis 2020 09 4;43(5):1131-1142. Epub 2020 May 4.

Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, California, USA.

Sphingosine-1-phosphate (S1P) lyase is a vitamin B6-dependent enzyme that degrades sphingosine-1-phosphate in the final step of sphingolipid metabolism. In 2017, a new inherited disorder was described caused by mutations in SGPL1, which encodes sphingosine phosphate lyase (SPL). This condition is referred to as SPL insufficiency syndrome (SPLIS) or alternatively as nephrotic syndrome type 14 (NPHS14). Patients with SPLIS exhibit lymphopenia, nephrosis, adrenal insufficiency, and/or neurological defects. No targeted therapy for SPLIS has been reported. Vitamin B6 supplementation has therapeutic activity in some genetic diseases involving B6-dependent enzymes, a finding ascribed largely to the vitamin's chaperone function. We investigated whether B6 supplementation might have activity in SPLIS patients. We retrospectively monitored responses of disease biomarkers in patients supplemented with B6 and measured SPL activity and sphingolipids in B6-treated patient-derived fibroblasts. In two patients, disease biomarkers responded to B6 supplementation. S1P abundance and activity levels increased and sphingolipids decreased in response to B6. One responsive patient is homozygous for an SPL R222Q variant present in almost 30% of SPLIS patients. Molecular modeling suggests the variant distorts the dimer interface which could be overcome by cofactor supplementation. We demonstrate the first potential targeted therapy for SPLIS and suggest that 30% of SPLIS patients might respond to cofactor supplementation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jimd.12238DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072405PMC
September 2020
-->