Publications by authors named "Frederic Bibollet-Ruche"

65 Publications

Modulating HIV-1 envelope glycoprotein conformation to decrease the HIV-1 reservoir.

Cell Host Microbe 2021 Jun 20;29(6):904-916.e6. Epub 2021 May 20.

Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA. Electronic address:

Small CD4-mimetic compounds (CD4mc) sensitize HIV-1-infected cells to antibody-dependent cellular cytotoxicity (ADCC) by facilitating antibody recognition of epitopes that are otherwise occluded on the unliganded viral envelope (Env). Combining CD4mc with two families of CD4-induced (CD4i) antibodies, which are frequently found in plasma of HIV-1-infected individuals, stabilizes Env in a conformation that is vulnerable to ADCC. We employed new-generation SRG-15 humanized mice, supporting natural killer (NK) cell and Fc-effector functions to demonstrate that brief treatment with CD4mc and CD4i-Abs significantly decreases HIV-1 replication, the virus reservoir and viral rebound after ART interruption. These effects required Fc-effector functions and NK cells, highlighting the importance of ADCC. Viral rebound was also suppressed in HIV-1+-donor cell-derived humanized mice supplemented with autologous HIV-1+-donor-derived plasma and CD4mc. These results indicate that CD4mc could have therapeutic utility in infected individuals for decreasing the size of the HIV-1 reservoir and/or achieving a functional cure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chom.2021.04.014DOI Listing
June 2021

CD4 receptor diversity represents an ancient protection mechanism against primate lentiviruses.

Proc Natl Acad Sci U S A 2021 Mar;118(13)

Lukuru Wildlife Research Foundation, Tshuapa-Lomami-Lualaba Project, BP 2012, Kinshasa, Democratic Republic of the Congo.

Infection with human and simian immunodeficiency viruses (HIV/SIV) requires binding of the viral envelope glycoprotein (Env) to the host protein CD4 on the surface of immune cells. Although invariant in humans, the Env binding domain of the chimpanzee CD4 is highly polymorphic, with nine coding variants circulating in wild populations. Here, we show that within-species CD4 diversity is not unique to chimpanzees but found in many African primate species. Characterizing the outermost (D1) domain of the CD4 protein in over 500 monkeys and apes, we found polymorphic residues in 24 of 29 primate species, with as many as 11 different coding variants identified within a single species. D1 domain amino acid replacements affected SIV Env-mediated cell entry in a single-round infection assay, restricting infection in a strain- and allele-specific fashion. Several identical CD4 polymorphisms, including the addition of -linked glycosylation sites, were found in primate species from different genera, providing striking examples of parallel evolution. Moreover, seven different guenons ( spp.) shared multiple distinct D1 domain variants, pointing to long-term trans-specific polymorphism. These data indicate that the HIV/SIV Env binding region of the primate CD4 protein is highly variable, both within and between species, and suggest that this diversity has been maintained by balancing selection for millions of years, at least in part to confer protection against primate lentiviruses. Although long-term SIV-infected species have evolved specific mechanisms to avoid disease progression, primate lentiviruses are intrinsically pathogenic and have left their mark on the host genome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2025914118DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8020793PMC
March 2021

Heightened resistance to host type 1 interferons characterizes HIV-1 at transmission and after antiretroviral therapy interruption.

Sci Transl Med 2021 Jan;13(576)

Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA.

Type 1 interferons (IFN-I) are potent innate antiviral effectors that constrain HIV-1 transmission. However, harnessing these cytokines for HIV-1 cure strategies has been hampered by an incomplete understanding of their antiviral activities at later stages of infection. Here, we characterized the IFN-I sensitivity of 500 clonally derived HIV-1 isolates from the plasma and CD4 T cells of 26 individuals sampled longitudinally after transmission or after antiretroviral therapy (ART) and analytical treatment interruption. We determined the concentration of IFNα2 and IFNβ that reduced viral replication in vitro by 50% (IC) and found consistent changes in the sensitivity of HIV-1 to IFN-I inhibition both across individuals and over time. Resistance of HIV-1 isolates to IFN-I was uniformly high during acute infection, decreased in all individuals in the first year after infection, was reacquired concomitant with CD4 T cell loss, and remained elevated in individuals with accelerated disease. HIV-1 isolates obtained by viral outgrowth during suppressive ART were relatively IFN-I sensitive, resembling viruses circulating just before ART initiation. However, viruses that rebounded after treatment interruption displayed the highest degree of IFNα2 and IFNβ resistance observed at any time during the infection course. These findings indicate a dynamic interplay between host innate responses and the evolving HIV-1 quasispecies, with the relative contribution of IFN-I to HIV-1 control affected by both ART and analytical treatment interruption. Although elevated at transmission, host innate pressures are the highest during viral rebound, limiting the viruses that successfully become reactivated from latency to those that are IFN-I resistant.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.abd8179DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923595PMC
January 2021

Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth.

Science 2021 01 19;371(6525). Epub 2020 Nov 19.

Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

Neutralizing antibodies elicited by HIV-1 coevolve with viral envelope proteins (Env) in distinctive patterns, in some cases acquiring substantial breadth. We report that primary HIV-1 envelope proteins-when expressed by simian-human immunodeficiency viruses in rhesus macaques-elicited patterns of Env-antibody coevolution very similar to those in humans, including conserved immunogenetic, structural, and chemical solutions to epitope recognition and precise Env-amino acid substitutions, insertions, and deletions leading to virus persistence. The structure of one rhesus antibody, capable of neutralizing 49% of a 208-strain panel, revealed a V2 apex mode of recognition like that of human broadly neutralizing antibodies (bNAbs) PGT145 and PCT64-35S. Another rhesus antibody bound the CD4 binding site by CD4 mimicry, mirroring human bNAbs 8ANC131, CH235, and VRC01. Virus-antibody coevolution in macaques can thus recapitulate developmental features of human bNAbs, thereby guiding HIV-1 immunogen design.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.abd2638DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8040783PMC
January 2021

SARS-CoV-2-specific peripheral T follicular helper cells correlate with neutralizing antibodies and increase during convalescence.

medRxiv 2020 Oct 12. Epub 2020 Oct 12.

T-cell immunity is likely to play a role in protection against SARS-CoV-2 by helping generate neutralizing antibodies. We longitudinally studied CD4 T-cell responses to the M, N, and S structural proteins of SARS-CoV-2 in 21 convalescent individuals. Within the first two months following symptom onset, a majority of individuals (81%) mount at least one CD4 T-cell response, and 48% of individuals mount detectable SARS-CoV-2-specific peripheral T follicular helper cells (pTfh, defined as CXCR5+PD1+ CD4 T cells). SARS-CoV-2-specific pTfh responses across all three protein specificities correlate with antibody neutralization with the strongest correlation observed for S protein-specific responses. When examined over time, pTfh responses increase in frequency and magnitude in convalescence, and robust responses with magnitudes greater than 5% were detected only at the second convalescent visit, an average of 38 days post-symptom onset. These data deepen our understanding of antigen-specific pTfh responses in SARS-CoV-2 infection, suggesting that M and N protein-specific pTfh may also assist in the development of neutralizing antibodies and that pTfh response formation may be delayed in SARS-CoV-2 infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2020.10.07.20208488DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7553179PMC
October 2020

Convergent Evolution of HLA-C Downmodulation in HIV-1 and HIV-2.

mBio 2020 07 14;11(4). Epub 2020 Jul 14.

Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany

HLA-C-mediated antigen presentation induces the killing of human immunodeficiency virus (HIV)-infected CD4 T cells by cytotoxic T lymphocytes (CTLs). To evade killing, many HIV-1 group M strains decrease HLA-C surface levels using their accessory protein Vpu. However, some HIV-1 group M isolates lack this activity, possibly to prevent the activation of natural killer (NK) cells. Analyzing diverse primate lentiviruses, we found that Vpu-mediated HLA-C downregulation is not limited to pandemic group M but is also found in HIV-1 groups O and P as well as several simian immunodeficiency viruses (SIVs). We show that Vpu targets HLA-C primarily at the protein level, independently of its ability to suppress NF-κB-driven gene expression, and that in some viral lineages, HLA-C downregulation may come at the cost of efficient counteraction of the restriction factor tetherin. Remarkably, HIV-2, which does not carry a gene, uses its accessory protein Vif to decrease HLA-C surface expression. This Vif activity requires intact binding sites for the Cullin5/Elongin ubiquitin ligase complex but is separable from its ability to counteract APOBEC3G. Similar to HIV-1 Vpu, the degree of HIV-2 Vif-mediated HLA-C downregulation varies considerably among different virus isolates. In agreement with opposing selection pressures , we show that the reduction of HLA-C surface levels by HIV-2 Vif is accompanied by increased NK cell-mediated killing. In summary, our results highlight the complex role of HLA-C in lentiviral infections and demonstrate that HIV-1 and HIV-2 have evolved at least two independent mechanisms to decrease HLA-C levels on infected cells. Genome-wide association studies suggest that HLA-C expression is a major determinant of viral load set points and CD4 T cell counts in HIV-infected individuals. On the one hand, efficient HLA-C expression enables the killing of infected cells by cytotoxic T lymphocytes (CTLs). On the other hand, HLA-C sends inhibitory signals to natural killer (NK) cells and enhances the infectivity of newly produced HIV particles. HIV-1 group M viruses modulate HLA-C expression using the accessory protein Vpu, possibly to balance CTL- and NK cell-mediated immune responses. Here, we show that the second human immunodeficiency virus, HIV-2, can use its accessory protein Vif to evade HLA-C-mediated restriction. Furthermore, our mutational analyses provide insights into the underlying molecular mechanisms. In summary, our results reveal how the two human AIDS viruses modulate HLA-C, a key component of the antiviral immune response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/mBio.00782-20DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7360927PMC
July 2020

Upregulation of BST-2 by Type I Interferons Reduces the Capacity of Vpu To Protect HIV-1-Infected Cells from NK Cell Responses.

mBio 2019 06 18;10(3). Epub 2019 Jun 18.

Centre de Recherche du CHUM, Montreal, Quebec, Canada

The HIV-1 accessory protein Vpu enhances viral release by counteracting the restriction factor BST-2. Furthermore, Vpu promotes NK cell evasion by downmodulating cell surface NTB-A and PVR, known ligands of the NK cell receptors NTB-A and DNAM-1, respectively. While it has been established that Vpu's transmembrane domain (TMD) is required for the interaction and intracellular sequestration of BST-2, NTB-A, and PVR, it remains unclear how Vpu manages to target these proteins simultaneously. In this study, we show that upon upregulation, BST-2 is preferentially downregulated by Vpu over its other TMD substrates. We found that type I interferon (IFN)-mediated BST-2 upregulation greatly impairs the ability of Vpu to downregulate NTB-A and PVR. Our results suggest that occupation of Vpu by BST-2 affects its ability to downregulate other TMD substrates. Accordingly, knockdown of BST-2 increases Vpu's potency to downmodulate NTB-A and PVR in the presence of type I IFN treatment. Moreover, we show that expression of human BST-2, but not that of the macaque orthologue, decreases Vpu's capacity to downregulate NTB-A. Importantly, we show that type I IFNs efficiently sensitize HIV-1-infected cells to NTB-A- and DNAM-1-mediated direct and antibody-dependent NK cell responses. Altogether, our results reveal that type I IFNs decrease Vpu's polyfunctionality, thus reducing its capacity to protect HIV-1-infected cells from NK cell responses. The restriction factor BST-2 and the NK cell ligands NTB-A and PVR are among a growing list of membrane proteins found to be downregulated by HIV-1 Vpu. BST-2 antagonism enhances viral release, while NTB-A and PVR downmodulation contributes to NK cell evasion. However, it remains unclear how Vpu can target multiple cellular factors simultaneously. Here we provide evidence that under physiological conditions, BST-2 is preferentially targeted by Vpu over NTB-A and PVR. Specifically, we show that type I IFNs decrease Vpu's polyfunctionality by upregulating BST-2, thus reducing its capacity to protect HIV-1-infected cells from NK cell responses. This indicates that there is a hierarchy of Vpu substrates upon IFN treatment, revealing that for the virus, targeting BST-2 as part of its resistance to IFN takes precedence over evading NK cell responses. This reveals a potential weakness in HIV-1's immunoevasion mechanisms that may be exploited therapeutically to harness NK cell responses against HIV-1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/mBio.01113-19DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581860PMC
June 2019

CD4 receptor diversity in chimpanzees protects against SIV infection.

Proc Natl Acad Sci U S A 2019 02 4;116(8):3229-3238. Epub 2019 Feb 4.

Sanaga-Yong Chimpanzee Rescue Center, In Defense of Animals-Africa, Portland, OR 97204.

Human and simian immunodeficiency viruses (HIV/SIVs) use CD4 as the primary receptor to enter target cells. Here, we show that the chimpanzee CD4 is highly polymorphic, with nine coding variants present in wild populations, and that this diversity interferes with SIV envelope (Env)-CD4 interactions. Testing the replication fitness of SIVcpz strains in CD4 T cells from captive chimpanzees, we found that certain viruses were unable to infect cells from certain hosts. These differences were recapitulated in CD4 transfection assays, which revealed a strong association between CD4 genotypes and SIVcpz infection phenotypes. The most striking differences were observed for three substitutions (Q25R, Q40R, and P68T), with P68T generating a second N-linked glycosylation site (N66) in addition to an invariant N32 encoded by all chimpanzee CD4 alleles. In silico modeling and site-directed mutagenesis identified charged residues at the CD4-Env interface and clashes between CD4- and Env-encoded glycans as mechanisms of inhibition. CD4 polymorphisms also reduced Env-mediated cell entry of monkey SIVs, which was dependent on at least one D1 domain glycan. CD4 allele frequencies varied among wild chimpanzees, with high diversity in all but the western subspecies, which appeared to have undergone a selective sweep. One allele was associated with lower SIVcpz prevalence rates in the wild. These results indicate that substitutions in the D1 domain of the chimpanzee CD4 can prevent SIV cell entry. Although some SIVcpz strains have adapted to utilize these variants, CD4 diversity is maintained, protecting chimpanzees against infection with SIVcpz and other SIVs to which they are exposed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1821197116DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386711PMC
February 2019

CHIIMP: An automated high-throughput microsatellite genotyping platform reveals greater allelic diversity in wild chimpanzees.

Ecol Evol 2018 Aug 16;8(16):7946-7963. Epub 2018 Jul 16.

Departments of Microbiology and Medicine Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania.

Short tandem repeats (STRs), also known as microsatellites, are commonly used to noninvasively genotype wild-living endangered species, including African apes. Until recently, capillary electrophoresis has been the method of choice to determine the length of polymorphic STR loci. However, this technique is labor intensive, difficult to compare across platforms, and notoriously imprecise. Here we developed a MiSeq-based approach and tested its performance using previously genotyped fecal samples from long-term studied chimpanzees in Gombe National Park, Tanzania. Using data from eight microsatellite loci as a reference, we designed a bioinformatics platform that converts raw MiSeq reads into locus-specific files and automatically calls alleles after filtering stutter sequences and other PCR artifacts. Applying this method to the entire Gombe population, we confirmed previously reported genotypes, but also identified 31 new alleles that had been missed due to sequence differences and size homoplasy. The new genotypes, which increased the allelic diversity and heterozygosity in Gombe by 61% and 8%, respectively, were validated by replicate amplification and pedigree analyses. This demonstrated inheritance and resolved one case of an ambiguous paternity. Using both singleplex and multiplex locus amplification, we also genotyped fecal samples from chimpanzees in the Greater Mahale Ecosystem in Tanzania, demonstrating the utility of the MiSeq-based approach for genotyping nonhabituated populations and performing comparative analyses across field sites. The new automated high-throughput analysis platform (available at https://github.com/ShawHahnLab/chiimp) will allow biologists to more accurately and effectively determine wildlife population size and structure, and thus obtain information critical for conservation efforts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ece3.4302DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145012PMC
August 2018

Loss of CXCR6 coreceptor usage characterizes pathogenic lentiviruses.

PLoS Pathog 2018 04 16;14(4):e1007003. Epub 2018 Apr 16.

Departments of Medicine and Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America.

Pandemic HIV-1 originated from the cross-species transmission of SIVcpz, which infects chimpanzees, while SIVcpz itself emerged following the cross-species transmission and recombination of monkey SIVs, with env contributed by the SIVgsn/mus/mon lineage that infects greater spot-nosed, mustached and mona monkeys. SIVcpz and HIV-1 are pathogenic in their respective hosts, while the phenotype of their SIVgsn/mus/mon ancestors is unknown. However, two well-studied SIV infected natural hosts, sooty mangabeys (SMs) and African green monkeys (AGMs), typically remain healthy despite high viral loads; these species express low levels of the canonical coreceptor CCR5, and recent work shows that CXCR6 is a major coreceptor for SIV in these hosts. It is not known what coreceptors were used by the precursors of SIVcpz, whether coreceptor use changed during emergence of the SIVcpz/HIV-1 lineage, and what T cell subsets express CXCR6 in natural hosts. Using species-matched coreceptors and CD4, we show here that SIVcpz uses only CCR5 for entry and, like HIV-1, cannot use CXCR6. In contrast, SIVmus efficiently uses both CXCR6 and CCR5. Coreceptor selectivity was determined by Env, with CXCR6 use abrogated by Pro326 in the V3 crown, which is absent in monkey SIVs but highly conserved in SIVcpz/HIV-1. To characterize which cells express CXCR6, we generated a novel antibody that recognizes CXCR6 of multiple primate species. Testing lymphocytes from SM, the best-studied natural host, we found that CXCR6 is restricted to CD4+ effector memory cells, and is expressed by a sub-population distinct from those expressing CCR5. Thus, efficient CXCR6 use, previously identified in SM and AGM infection, also characterizes a member of the SIV lineage that gave rise to SIVcpz/HIV-1. Loss of CXCR6 usage by SIVcpz may have altered its cell tropism, shifting virus from CXCR6-expressing cells that may support replication without disrupting immune function or homeostasis, towards CCR5-expressing cells with pathogenic consequences.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1007003DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5919676PMC
April 2018

Adaptive Evolution of RH5 in Ape species of the Subgenus.

mBio 2018 01 23;9(1). Epub 2018 Jan 23.

Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom

, the major cause of malaria morbidity and mortality in humans, has been shown to have emerged after cross-species transmission of one of six host-specific parasites (subgenus ) infecting wild chimpanzees () and western gorillas (). Binding of the parasite-encoded ligand RH5 to the host protein basigin is essential for erythrocyte invasion and has been implicated in host specificity. A recent study claimed to have found two amino acid changes in RH5 that "drove the host shift leading to the emergence of as a human pathogen." However, the ape data available at that time, which included only a single distantly related chimpanzee parasite sequence, were inadequate to justify any such conclusion. Here, we have investigated gene evolution using sequences from all six ape parasite species. Searching for gene-wide episodic selection across the entire phylogeny, we found eight codons to be under positive selection, including three that correspond to contact residues known to form hydrogen bonds between RH5 and human basigin. One of these sites (residue 197) has changed subsequent to the transmission from apes to humans that gave rise to , suggesting a possible role in the adaptation of the gorilla parasite to the human host. We also found evidence that the patterns of nucleotide polymorphisms in are not typical of species and likely reflect the recent demographic history of the human parasite. A number of closely related, host-specific malaria parasites infecting wild chimpanzees and gorillas have recently been described. The most important cause of human malaria, , is now known to have resulted from a cross-species transmission of one of the gorilla parasites. Overcoming species-specific interactions between a parasite ligand, RH5, and its receptor on host cells, basigin, was likely an important step in the origin of the human parasite. We have investigated the evolution of the gene and found evidence of adaptive changes during the diversification of the ape parasite species at sites that are known to form bonds with human basigin. One of these changes occurred at the origin of , implicating it as an important adaptation to the human host.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/mBio.02237-17DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5784257PMC
January 2018

Effective treatment of SIVcpz-induced immunodeficiency in a captive western chimpanzee.

Retrovirology 2017 06 2;14(1):35. Epub 2017 Jun 2.

Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Background: Simian immunodeficiency virus of chimpanzees (SIVcpz), the progenitor of human immunodeficiency virus type 1 (HIV-1), is associated with increased mortality and AIDS-like immunopathology in wild-living chimpanzees (Pan troglodytes). Surprisingly, however, similar findings have not been reported for chimpanzees experimentally infected with SIVcpz in captivity, raising questions about the intrinsic pathogenicity of this lentivirus.

Findings: Here, we report progressive immunodeficiency and clinical disease in a captive western chimpanzee (P. t. verus) infected twenty years ago by intrarectal inoculation with an SIVcpz strain (ANT) from a wild-caught eastern chimpanzee (P. t. schweinfurthii). With sustained plasma viral loads of 10 to 10 RNA copies/ml for the past 15 years, this chimpanzee developed CD4+ T cell depletion (220 cells/μl), thrombocytopenia (90,000 platelets/μl), and persistent soft tissue infections refractory to antibacterial therapy. Combination antiretroviral therapy consisting of emtricitabine (FTC), tenofovir disoproxil fumarate (TDF), and dolutegravir (DTG) decreased plasma viremia to undetectable levels (<200 copies/ml), improved CD4+ T cell counts (509 cell/μl), and resulted in the rapid resolution of all soft tissue infections. However, initial lack of adherence and/or differences in pharmacokinetics led to low plasma drug concentrations, which resulted in transient rebound viremia and the emergence of FTC resistance mutations (M184V/I) identical to those observed in HIV-1 infected humans.

Conclusions: These data demonstrate that SIVcpz can cause immunodeficiency and other hallmarks of AIDS in captive chimpanzees, including P. t. verus apes that are not naturally infected with this virus. Moreover, SIVcpz-associated immunodeficiency can be effectively treated with antiretroviral therapy, although sufficiently high plasma concentrations must be maintained to prevent the emergence of drug resistance. These findings extend a growing body of evidence documenting the immunopathogenicity of SIVcpz and suggest that experimentally infected chimpanzees may benefit from clinical monitoring and therapeutic intervention.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12977-017-0359-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5457593PMC
June 2017

BST-2 Expression Modulates Small CD4-Mimetic Sensitization of HIV-1-Infected Cells to Antibody-Dependent Cellular Cytotoxicity.

J Virol 2017 06 12;91(11). Epub 2017 May 12.

Centre de Recherche du CHUM, Montreal, Quebec, Canada

Antibodies recognizing conserved CD4-induced (CD4i) epitopes on human immunodeficiency virus type 1 (HIV-1) Env and able to mediate antibody-dependent cellular cytotoxicity (ADCC) have been shown to be present in sera from most HIV-1-infected individuals. These antibodies preferentially recognize Env in its CD4-bound conformation. CD4 downregulation by Nef and Vpu dramatically reduces exposure of CD4i HIV-1 Env epitopes and therefore reduce the susceptibility of HIV-1-infected cells to ADCC mediated by HIV-positive (HIV+) sera. Importantly, this mechanism of immune evasion can be circumvented with small-molecule CD4 mimetics (CD4mc) that are able to transition Env into the CD4-bound conformation and sensitize HIV-1-infected cells to ADCC mediated by HIV+ sera. However, HIV-1 developed additional mechanisms to avoid ADCC, including Vpu-mediated BST-2 antagonism, which decreases the overall amount of Env present at the cell surface. Accordingly, BST-2 upregulation in response to alpha interferon (IFN-α) was shown to increase the susceptibility of HIV-1-infected cells to ADCC despite the activity of Vpu. Here we show that BST-2 upregulation by IFN-β and interleukin-27 (IL-27) also increases the surface expression of Env and thus boosts the ability of CD4mc to sensitize HIV-1-infected cells to ADCC by sera from HIV-1-infected individuals. HIV-1 evolved sophisticated strategies to conceal Env epitopes from ADCC-mediating antibodies present in HIV+ sera. Vpu-mediated BST-2 downregulation was shown to decrease ADCC responses by limiting the amount of Env present at the cell surface. This effect of Vpu was shown to be attenuated by IFN-α treatment. Here we show that in addition to IFN-α, IFN-β and IL-27 also affect Vpu-mediated BST-2 downregulation and greatly enhance ADCC responses against HIV-1-infected cells in the presence of CD4mc. These findings may inform strategies aimed at HIV prevention and eradication.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.00219-17DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5432882PMC
June 2017

Efficient Vpu-Mediated Tetherin Antagonism by an HIV-1 Group O Strain.

J Virol 2017 03 28;91(6). Epub 2017 Feb 28.

Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany

Simian immunodeficiency viruses (SIVs) use their Nef proteins to counteract the restriction factor tetherin. However, a deletion in human tetherin prevents antagonism by the Nef proteins of SIVcpz and SIVgor, which represent the ape precursors of human immunodeficiency virus type 1 (HIV-1). To promote virus release from infected cells, pandemic HIV-1 group M strains evolved Vpu as a tetherin antagonist, while the Nef protein of less widespread HIV-1 group O strains acquired the ability to target a region adjacent to this deletion. In this study, we identified an unusual HIV-1 group O strain (RBF206) that evolved Vpu as an effective antagonist of human tetherin. While both RBF206 Vpu and Nef exert anti-tetherin activity in transient-transfection assays, mainly Vpu promotes RBF206 release in infected CD4 T cells. Although mutations distinct from the adaptive changes observed in group M Vpus (M-Vpus) were critical for the acquisition of its anti-tetherin activity, RBF206 O-Vpu potently suppresses NF-κB activation and reduces CD4 cell surface expression. Interestingly, RBF206 Vpu counteracts tetherin in a largely species-independent manner, degrading both the long and short isoforms of human tetherin. Downmodulation of CD4, but not counteraction of tetherin, by RBF206 Vpu was dependent on the cellular ubiquitin ligase machinery. Our data present the first example of an HIV-1 group O Vpu that efficiently antagonizes human tetherin and suggest that counteraction by O-Nefs may be suboptimal. Previous studies showed that HIV-1 groups M and O evolved two alternative strategies to counteract the human ortholog of the restriction factor tetherin. While HIV-1 group M switched from Nef to Vpu due to a deletion in the cytoplasmic domain of human tetherin, HIV-1 group O, which lacks Vpu-mediated anti-tetherin activity, acquired a Nef protein that is able to target a region adjacent to the deletion. Here we report an unusual exception, identifying a strain of HIV-1 group O (RBF206) whose Vpu protein evolved an effective antagonism of human tetherin. Interestingly, the adaptive changes in RBF206 Vpu are distinct from those found in M-Vpus and mediate efficient counteraction of both the long and short isoforms of this restriction factor. Our results further illustrate the enormous flexibility of HIV-1 in counteracting human defense mechanisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.02177-16DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5331793PMC
March 2017

Resistance to type 1 interferons is a major determinant of HIV-1 transmission fitness.

Proc Natl Acad Sci U S A 2017 01 9;114(4):E590-E599. Epub 2017 Jan 9.

Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;

Sexual transmission of HIV-1 is an inefficient process, with only one or few variants of the donor quasispecies establishing the new infection. A critical, and as yet unresolved, question is whether the mucosal bottleneck selects for viruses with increased transmission fitness. Here, we characterized 300 limiting dilution-derived virus isolates from the plasma, and in some instances genital secretions, of eight HIV-1 donor and recipient pairs. Although there were no differences in the amount of virion-associated envelope glycoprotein, recipient isolates were on average threefold more infectious (P = 0.0001), replicated to 1.4-fold higher titers (P = 0.004), were released from infected cells 4.2-fold more efficiently (P < 0.00001), and were significantly more resistant to type I IFNs than the corresponding donor isolates. Remarkably, transmitted viruses exhibited 7.8-fold higher IFNα2 (P < 0.00001) and 39-fold higher IFNβ (P < 0.00001) half-maximal inhibitory concentrations (IC) than did donor isolates, and their odds of replicating in CD4 T cells at the highest IFNα2 and IFNβ doses were 35-fold (P < 0.00001) and 250-fold (P < 0.00001) greater, respectively. Interestingly, pretreatment of CD4 T cells with IFNβ, but not IFNα2, selected donor plasma isolates that exhibited a transmitted virus-like phenotype, and such viruses were also detected in the donor genital tract. These data indicate that transmitted viruses are phenotypically distinct, and that increased IFN resistance represents their most distinguishing property. Thus, the mucosal bottleneck selects for viruses that are able to replicate and spread efficiently in the face of a potent innate immune response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1620144114DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5278458PMC
January 2017

The effect of HIV-1 Vif polymorphisms on A3G anti-viral activity in an in vivo mouse model.

Retrovirology 2016 06 30;13(1):45. Epub 2016 Jun 30.

Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Humans encode seven APOBEC3 proteins (A-H), with A3G, 3F and 3H as the major factors restricting HIV-1 replication. HIV-1, however, encodes Vif, which counteracts A3 proteins by chaperoning them to the proteasome where they are degraded. Vif polymorphisms found in HIV-1s isolated from infected patients have varying anti-A3G potency when assayed in vitro, but there are few studies demonstrating this in in vivo models. Here, we created Friend murine leukemia viruses encoding vif alleles that were previously shown to differentially neutralize A3G in cell culture or that were originally found in primary HIV-1 isolates. Infection of transgenic mice expressing different levels of human A3G showed that these naturally occurring Vif variants differed in their ability to counteract A3G during in vivo infection, although the effects on viral replication were not identical to those seen in cultured cells. We also found that the polymorphic Vifs that attenuated viral replication reverted to wild type only in A3G transgenic mice. Finally, we found that the level of A3G-mediated deamination was inversely correlated with the level of viral replication. This animal model should be useful for studying the functional significance of naturally occurring vif polymorphisms, as well as viral evolution in the presence of A3G.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12977-016-0280-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4929759PMC
June 2016

The Role of the Antiviral APOBEC3 Gene Family in Protecting Chimpanzees against Lentiviruses from Monkeys.

PLoS Pathog 2015 Sep 22;11(9):e1005149. Epub 2015 Sep 22.

Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.

Cross-species transmissions of viruses from animals to humans are at the origin of major human pathogenic viruses. While the role of ecological and epidemiological factors in the emergence of new pathogens is well documented, the importance of host factors is often unknown. Chimpanzees are the closest relatives of humans and the animal reservoir at the origin of the human AIDS pandemic. However, despite being regularly exposed to monkey lentiviruses through hunting, chimpanzees are naturally infected by only a single simian immunodeficiency virus, SIVcpz. Here, we asked why chimpanzees appear to be protected against the successful emergence of other SIVs. In particular, we investigated the role of the chimpanzee APOBEC3 genes in providing a barrier to infection by most monkey lentiviruses. We found that most SIV Vifs, including Vif from SIVwrc infecting western-red colobus, the chimpanzee's main monkey prey in West Africa, could not antagonize chimpanzee APOBEC3G. Moreover, chimpanzee APOBEC3D, as well as APOBEC3F and APOBEC3H, provided additional protection against SIV Vif antagonism. Consequently, lentiviral replication in primary chimpanzee CD4(+) T cells was dependent on the presence of a lentiviral vif gene that could antagonize chimpanzee APOBEC3s. Finally, by identifying and functionally characterizing several APOBEC3 gene polymorphisms in both common chimpanzees and bonobos, we found that these ape populations encode APOBEC3 proteins that are uniformly resistant to antagonism by monkey lentiviruses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1005149DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4578921PMC
September 2015

Neutralization properties of simian immunodeficiency viruses infecting chimpanzees and gorillas.

mBio 2015 Apr 21;6(2). Epub 2015 Apr 21.

Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Unlabelled: Broadly cross-reactive neutralizing antibodies (bNabs) represent powerful tools to combat human immunodeficiency virus type 1 (HIV-1) infection. Here, we examined whether HIV-1-specific bNabs are capable of cross-neutralizing distantly related simian immunodeficiency viruses (SIVs) infecting central (Pan troglodytes troglodytes) (SIVcpzPtt) and eastern (Pan troglodytes schweinfurthii) (SIVcpzPts) chimpanzees (n = 11) as well as western gorillas (Gorilla gorilla gorilla) (SIVgor) (n = 1). We found that bNabs directed against the CD4 binding site (n = 10), peptidoglycans at the base of variable loop 3 (V3) (n = 5), and epitopes at the interface of surface (gp120) and membrane-bound (gp41) envelope glycoproteins (n = 5) failed to neutralize SIVcpz and SIVgor strains. In addition, apex V2-directed bNabs (n = 3) as well as llama-derived (heavy chain only) antibodies (n = 6) recognizing both the CD4 binding site and gp41 epitopes were either completely inactive or neutralized only a fraction of SIVcpzPtt strains. In contrast, one antibody targeting the membrane-proximal external region (MPER) of gp41 (10E8), functional CD4 and CCR5 receptor mimetics (eCD4-Ig, eCD4-Ig(mim2), CD4-218.3-E51, and CD4-218.3-E51-mim2), as well as mono- and bispecific anti-human CD4 (iMab and LM52) and CCR5 (PRO140, PRO140-10E8) receptor antibodies neutralized >90% of SIVcpz and SIVgor strains with low-nanomolar (0.13 to 8.4 nM) potency. Importantly, the latter antibodies blocked virus entry not only in TZM-bl cells but also in Cf2Th cells expressing chimpanzee CD4 and CCR5 and neutralized SIVcpz in chimpanzee CD4(+) T cells, with 50% inhibitory concentrations (IC50s) ranging from 3.6 to 40.5 nM. These findings provide new insight into the protective capacity of anti-HIV-1 bNabs and identify candidates for further development to combat SIVcpz infection.

Importance: SIVcpz is widespread in wild-living chimpanzees and can cause AIDS-like immunopathology and clinical disease. HIV-1 infection of humans can be controlled by antiretroviral therapy; however, treatment of wild-living African apes with current drug regimens is not feasible. Nonetheless, it may be possible to curb the spread of SIVcpz in select ape communities using vectored immunoprophylaxis and/or therapy. Here, we show that antibodies and antibody-like inhibitors developed to combat HIV-1 infection in humans are capable of neutralizing genetically diverse SIVcpz and SIVgor strains with considerable breadth and potency, including in primary chimpanzee CD4(+) T cells. These reagents provide an important first step toward translating intervention strategies currently developed to treat and prevent AIDS in humans to SIV-infected apes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/mBio.00296-15DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4453581PMC
April 2015

Nef proteins of epidemic HIV-1 group O strains antagonize human tetherin.

Cell Host Microbe 2014 Nov 12;16(5):639-50. Epub 2014 Nov 12.

Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany. Electronic address:

Most simian immunodeficiency viruses use their Nef protein to antagonize the host restriction factor tetherin. A deletion in human tetherin confers Nef resistance, representing a hurdle to successful zoonotic transmission. HIV-1 group M evolved to utilize the viral protein U (Vpu) to counteract tetherin. Although HIV-1 group O has spread epidemically in humans, it has not evolved a Vpu-based tetherin antagonism. Here we show that HIV-1 group O Nef targets a region adjacent to this deletion to inhibit transport of human tetherin to the cell surface, enhances virion release, and increases viral resistance to inhibition by interferon-α. The Nef protein of the inferred common ancestor of group O viruses is also active against human tetherin. Thus, Nef-mediated antagonism of human tetherin evolved prior to the spread of HIV-1 group O and likely facilitated secondary virus transmission. Our results may explain the epidemic spread of HIV-1 group O.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chom.2014.10.002DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274627PMC
November 2014

African origin of the malaria parasite Plasmodium vivax.

Nat Commun 2014 ;5:3346

Division of Biological Anthropology, University of Cambridge, Cambridge CB2 1QH, UK.

Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms4346DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4089193PMC
November 2015

The transmembrane domain of HIV-1 Vpu is sufficient to confer anti-tetherin activity to SIVcpz and SIVgor Vpu proteins: cytoplasmic determinants of Vpu function.

Retrovirology 2013 Mar 20;10:32. Epub 2013 Mar 20.

Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.

Background: The acquisition of effective Vpu-mediated anti-tetherin activity to promote virion release following transmission of SIVcpzPtt from central chimpanzees (Pan troglodytes troglodytes) to humans distinguishes pandemic HIV-1 group M strains from non-pandemic group N, O and P viruses and may have been a prerequisite for their global spread. Some functional motifs in the cytoplasmic region of HIV-1 M Vpus proposed to be important for anti-tetherin activity are more frequently found in the Vpu proteins of SIVcpzPtt than in those of SIVcpzPts infecting eastern chimpanzees (P. t. schweinfurthii), that have not been detected in humans, and SIVgor from gorillas, which is closely related to HIV-1 O and P. Thus, SIVcpzPtt strains may require fewer adaptive changes in Vpu than SIVcpzPts or SIVgor strains to counteract human tetherin.

Results: To examine whether SIVcpzPtt may only need changes in the transmembrane domain (TMD) of Vpu to acquire anti-tetherin activity, whereas SIVcpzPts and SIVgor may also require changes in the cytoplasmic region, we analyzed chimeras between the TMD of an HIV-1 M Vpu and the cytoplasmic domains of SIVcpzPtt (n = 2), SIVcpzPts (n = 2) and SIVgor (n = 2) Vpu proteins. Unexpectedly, all of these chimeras were capable of counteracting human tetherin to enhance virion release, irrespective of the presence or absence of the putative adaptor protein binding sites and the DSGxxS β-TrCP binding motif reported to be critical for effective anti-tetherin activity of M Vpus. It was also surprising that in three of the six chimeras the gain of anti-tetherin function was associated with a loss of the CD4 degradation activity since this function was conserved among all parental HIV-1, SIVcpz and SIVgor Vpu proteins.

Conclusions: Our results show that changes in the TMD of SIVcpzPtt, SIVcpzPts and SIVgor Vpus are sufficient to render them active against human tetherin. Thus, several previously described domains in the extracellular region of Vpu are not absolutely essential for tetherin antagonism but may be required for other Vpu functions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1742-4690-10-32DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3621411PMC
March 2013

Human tetherin exerts strong selection pressure on the HIV-1 group N Vpu protein.

PLoS Pathog 2012 Dec 20;8(12):e1003093. Epub 2012 Dec 20.

Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.

HIV-1 groups M and N emerged within the last century following two independent cross-species transmissions of SIVcpz from chimpanzees to humans. In contrast to pandemic group M strains, HIV-1 group N viruses are exceedingly rare, with only about a dozen infections identified, all but one in individuals from Cameroon. Poor adaptation to the human host may be responsible for this limited spread of HIV-1 group N in the human population. Here, we analyzed the function of Vpu proteins from seven group N strains from Cameroon, the place where this zoonosis originally emerged. We found that these N-Vpus acquired four amino acid substitutions (E15A, V19A and IV25/26LL) in their transmembrane domain (TMD) that allow efficient interaction with human tetherin. However, despite these adaptive changes, most N-Vpus still antagonize human tetherin only poorly and fail to down-modulate CD4, the natural killer (NK) cell ligand NTB-A as well as the lipid-antigen presenting protein CD1d. These functional deficiencies were mapped to amino acid changes in the cytoplasmic domain that disrupt putative adaptor protein binding sites and an otherwise highly conserved ßTrCP-binding DSGxxS motif. As a consequence, N-Vpus exhibited aberrant intracellular localization and/or failed to recruit the ubiquitin-ligase complex to induce tetherin degradation. The only exception was the Vpu of a group N strain recently discovered in France, but originally acquired in Togo, which contained intact cytoplasmic motifs and counteracted tetherin as effectively as the Vpus of pandemic HIV-1 M strains. These results indicate that HIV-1 group N Vpu is under strong host-specific selection pressure and that the acquisition of effective tetherin antagonism may lead to the emergence of viral variants with increased transmission fitness.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1003093DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3534379PMC
December 2012

Reacquisition of Nef-mediated tetherin antagonism in a single in vivo passage of HIV-1 through its original chimpanzee host.

Cell Host Microbe 2012 Sep;12(3):373-80

Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany.

The interferon-induced host restriction factor tetherin poses a barrier for SIV transmission from primates to humans. After cross-species transmission, the chimpanzee precursor of pandemic HIV-1 switched from the accessory protein Nef to Vpu to effectively counteract human tetherin. As we report here, the experimental reintroduction of HIV-1 into its original chimpanzee host resulted in a virus that can use both Vpu and Nef to antagonize chimpanzee tetherin. Functional analyses demonstrated that alterations in and near the highly conserved ExxxLL motif in the C-terminal loop of Nef were critical for the reacquisition of antitetherin activity. Strikingly, just two amino acid changes allowed HIV-1 Nef to counteract chimpanzee tetherin and promote virus release. Our data demonstrate that primate lentiviruses can reacquire lost accessory gene functions during a single in vivo passage and suggest that other functional constraints keep Nef ready to regain antitetherin activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chom.2012.07.008DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3444822PMC
September 2012

Epitope mapping of broadly neutralizing HIV-2 human monoclonal antibodies.

J Virol 2012 Nov 29;86(22):12115-28. Epub 2012 Aug 29.

Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.

Recent studies have shown that natural infection by HIV-2 leads to the elicitation of high titers of broadly neutralizing antibodies (NAbs) against primary HIV-2 strains (T. I. de Silva, et al., J. Virol. 86:930-946, 2012; R. Kong, et al., J. Virol. 86:947-960, 2012; G. Ozkaya Sahin, et al., J. Virol. 86:961-971, 2012). Here, we describe the envelope (Env) binding and neutralization properties of 15 anti-HIV-2 human monoclonal antibodies (MAbs), 14 of which were newly generated from 9 chronically infected subjects. All 15 MAbs bound specifically to HIV-2 gp120 monomers and neutralized heterologous primary virus strains HIV-2(7312A) and HIV-2(ST). Ten of 15 MAbs neutralized a third heterologous primary virus strain, HIV-2(UC1). The median 50% inhibitory concentrations (IC(50)s) for these MAbs were surprisingly low, ranging from 0.007 to 0.028 μg/ml. Competitive Env binding studies revealed three MAb competition groups: CG-I, CG-II, and CG-III. Using peptide scanning, site-directed mutagenesis, chimeric Env constructions, and single-cycle virus neutralization assays, we mapped the epitope of CG-I antibodies to a linear region in variable loop 3 (V3), the epitope of CG-II antibodies to a conformational region centered on the carboxy terminus of V4, and the epitope(s) of CG-III antibodies to conformational regions associated with CD4- and coreceptor-binding sites. HIV-2 Env is thus highly immunogenic in vivo and elicits antibodies having diverse epitope specificities, high potency, and wide breadth. In contrast to the HIV-1 Env trimer, which is generally well shielded from antibody binding and neutralization, HIV-2 is surprisingly vulnerable to broadly reactive NAbs. The availability of 15 human MAbs targeting diverse HIV-2 Env epitopes can facilitate comparative studies of HIV/SIV Env structure, function, antigenicity, and immunogenicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.01632-12DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3486499PMC
November 2012

Eastern chimpanzees, but not bonobos, represent a simian immunodeficiency virus reservoir.

J Virol 2012 Oct 25;86(19):10776-91. Epub 2012 Jul 25.

Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Chimpanzees in west central Africa (Pan troglodytes troglodytes) are endemically infected with simian immunodeficiency viruses (SIVcpzPtt) that have crossed the species barrier to humans and gorillas on at least five occasions, generating pandemic and nonpandemic forms of human immunodeficiency virus type 1 (HIV-1) as well as gorilla SIV (SIVgor). Chimpanzees in east Africa (Pan troglodytes schweinfurthii) are also infected with SIVcpz; however, their viruses (SIVcpzPts) have never been found in humans. To examine whether this is due to a paucity of natural infections, we used noninvasive methods to screen wild-living eastern chimpanzees in the Democratic Republic of the Congo (DRC), Uganda, and Rwanda. We also screened bonobos (Pan paniscus) in the DRC, a species not previously tested for SIV in the wild. Fecal samples (n = 3,108) were collected at 50 field sites, tested for species and subspecies origin, and screened for SIVcpz antibodies and nucleic acids. Of 2,565 samples from eastern chimpanzees, 323 were antibody positive and 92 contained viral RNA. The antibody-positive samples represented 76 individuals from 19 field sites, all sampled north of the Congo River in an area spanning 250,000 km(2). In this region, SIVcpzPts was common and widespread, with seven field sites exhibiting infection rates of 30% or greater. The overall prevalence of SIVcpzPts infection was 13.4% (95% confidence interval, 10.7% to 16.5%). In contrast, none of the 543 bonobo samples from six sites was antibody positive. All newly identified SIVcpzPts strains clustered in strict accordance to their subspecies origin; however, they exhibited considerable genetic diversity, especially in protein domains known to be under strong host selection pressure. Thus, the absence of SIVcpzPts zoonoses cannot be explained by an insufficient primate reservoir. Instead, greater adaptive hurdles may have prevented the successful colonization of humans by P. t. schweinfurthii viruses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.01498-12DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3457319PMC
October 2012

Efficient SIVcpz replication in human lymphoid tissue requires viral matrix protein adaptation.

J Clin Invest 2012 May 16;122(5):1644-52. Epub 2012 Apr 16.

Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6060, USA.

SIVs infecting wild-living apes in west central Africa have crossed the species barrier to humans on at least four different occasions, one of which spawned the AIDS pandemic. Although the chimpanzee precursor of pandemic HIV-1 strains must have been able to infect humans, the capacity of SIVcpz strains to replicate in human lymphoid tissues (HLTs) is not known. Here, we show that SIVcpz strains from two chimpanzee subspecies are capable of replicating in human tonsillary explant cultures, albeit only at low titers. However, SIVcpz replication in HLT was significantly improved after introduction of a previously identified human-specific adaptation at position 30 in the viral Gag matrix protein. An Arg or Lys at this position significantly increased SIVcpz replication in HLT, while the same mutation reduced viral replication in chimpanzee-derived CD4(+) T cells. Thus, naturally occurring SIVcpz strains are capable of infecting HLTs, the major site of HIV-1 replication in vivo. However, efficient replication requires the acquisition of a host-specific adaptation in the viral matrix protein. These results identify Gag matrix as a major determinant of SIVcpz replication fitness in humans and suggest a critical role in the emergence of HIV/AIDS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI61429DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3336991PMC
May 2012

Budding of retroviruses utilizing divergent L domains requires nucleocapsid.

J Virol 2012 Apr 15;86(8):4182-93. Epub 2012 Feb 15.

Laboratory of Molecular Microbiology, Virus Budding Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.

We recently reported that human immunodeficiency virus type 1 (HIV-1) carrying PTAP and LYPX(n)L L domains ceased budding when the nucleocapsid (NC) domain was mutated, suggesting a role for NC in HIV-1 release. Here we investigated whether NC involvement in virus release is a property specific to HIV-1 or a general requirement of retroviruses. Specifically, we examined a possible role for NC in the budding of retroviruses relying on divergent L domains and structurally homologous NC domains that harbor diverse protein sequences. We found that NC is critical for the release of viruses utilizing the PTAP motif whether it functions within its native Gag in simian immunodeficiency virus cpzGAB2 (SIVcpzGAB2) or SIVsmmE543 or when it is transplanted into the heterologous Gag protein of equine infectious anemia virus (EIAV). In both cases, virus release was severely diminished even though NC mutant Gag proteins retained the ability to assemble spherical particles. Moreover, budding-defective NC mutants, which displayed particles tethered to the plasma membrane, were triggered to release virus when access to the cell endocytic sorting complex required for transport pathway was restored (i.e., in trans expression of Nedd4.2s). We also examined the role of NC in the budding of EIAV, a retrovirus relying exclusively on the (L)YPX(n)L-type L domain. We found that EIAV late budding defects were rescued by overexpression of the isolated Alix Bro1 domain (Bro1). Bro1-mediated rescue of EIAV release required the wild-type NC. EIAV NC mutants lost interactions with Bro1 and failed to produce viruses despite retaining the ability to self-assemble. Together, our studies establish a role for NC in the budding of retroviruses harboring divergent L domains and evolutionarily diverse NC sequences, suggesting the utilization of a common conserved mechanism and/or cellular factor rather than a specific motif.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.07105-11DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3318634PMC
April 2012

Potent autologous and heterologous neutralizing antibody responses occur in HIV-2 infection across a broad range of infection outcomes.

J Virol 2012 Jan 9;86(2):930-46. Epub 2011 Nov 9.

Medical Research Council (United Kingdom) Laboratories, Fajara, the Gambia.

Few studies have explored the role of neutralizing antibody (NAb) responses in controlling HIV-2 viremia and disease progression. Using a TZM-bl neutralization assay, we assessed heterologous and autologous NAb responses from a community cohort of HIV-2-infected individuals with a broad range of disease outcomes in rural Guinea-Bissau. All subjects (n = 40) displayed exceptionally high heterologous NAb titers (50% inhibitory plasma dilution or 50% inhibitory concentration [IC(50)], 1:7,000 to 1:1,000,000) against 5 novel primary HIV-2 envelopes and HIV-2 7312A, whereas ROD A and 3 primary envelopes were relatively resistant to neutralization. Most individuals also showed high autologous NAb against contemporaneous envelopes (78% of plasma-envelope combinations in 69 envelopes from 21 subjects), with IC(50)s above 1:10,000. No association between heterologous or autologous NAb titer and greater control of HIV-2 was found. A subset of envelopes was found to be more resistant to neutralization (by plasma and HIV-2 monoclonal antibodies). These envelopes were isolated from individuals with greater intrapatient sequence diversity and were associated with changes in potential N-linked glycosylation sites but not CD4 independence or CXCR4 use. Plasma collected from up to 15 years previously was able to potently neutralize recent autologous envelopes, suggesting a lack of escape from NAb and the persistence of neutralization-sensitive variants over time, despite significant NAb pressure. We conclude that despite the presence of broad and potent NAb responses in HIV-2-infected individuals, these are not the primary forces behind the dichotomous outcomes observed but reveal a limited capacity for adaptive selection and escape from host immunity in HIV-2 infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.06126-11DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3255814PMC
January 2012

Broad and potent neutralizing antibody responses elicited in natural HIV-2 infection.

J Virol 2012 Jan 26;86(2):947-60. Epub 2011 Oct 26.

Departments of Microbiology and Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.

Compared with human immunodeficiency virus type 1 (HIV-1), little is known about the susceptibility of HIV-2 to antibody neutralization. We characterized the potency and breadth of neutralizing antibody (NAb) responses in 64 subjects chronically infected with HIV-2 against three primary HIV-2 strains: HIV-2(7312A), HIV-2(ST), and HIV-2(UC1). Surprisingly, we observed in a single-cycle JC53bl-13/TZM-bl virus entry assay median reciprocal 50% inhibitory concentration (IC(50)) NAb titers of 1.7 × 10(5), 2.8 × 10(4), and 3.3 × 10(4), respectively. A subset of 5 patient plasma samples tested against a larger panel of 17 HIV-2 strains where the extracellular gp160 domain was substituted into the HIV-2(7312A) proviral backbone showed potent neutralization of all but 4 viruses. The specificity of antibody neutralization was confirmed using IgG purified from patient plasma, HIV-2 Envs cloned by single-genome amplification, viruses grown in human CD4(+) T cells and tested for neutralization sensitivity on human CD4(+) T target cells, and, as negative controls, env-minus viruses pseudotyped with HIV-1, vesicular stomatitis virus, or murine leukemia virus Env glycoproteins. Human monoclonal antibodies (MAbs) specific for HIV-2 V3 (6.10F), V4 (1.7A), CD4 binding site (CD4bs; 6.10B), CD4 induced (CD4i; 1.4H), and membrane-proximal external region (MPER; 4E10) epitopes potently neutralized the majority of 32 HIV-2 strains bearing Envs from 13 subjects. Patient antibodies competed with V3, V4, and CD4bs MAbs for binding to monomeric HIV-2 gp120 at titers that correlated significantly with NAb titers. HIV-2 MPER antibodies did not contribute to neutralization breadth or potency. These findings indicate that HIV-2 Env is highly immunogenic in natural infection, that high-titer broadly neutralizing antibodies are commonly elicited, and that unlike HIV-1, native HIV-2 Env trimers expose multiple broadly cross-reactive epitopes readily accessible to NAbs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.06155-11DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3255805PMC
January 2012