Publications by authors named "Franziska R Traube"

8 Publications

  • Page 1 of 1

5-Hydroxymethyl-, 5-Formyl- and 5-Carboxydeoxycytidines as Oxidative Lesions and Epigenetic Marks.

Chemistry 2021 Mar 26. Epub 2021 Mar 26.

Ludwig-Maximilians-Universitat Munchen, Department of Chemistry and Biochemistry, Butenandtstraße 5-13, 81377, München, GERMANY.

The four non-canonical nucleotides in the human genome 5-methyl-, 5-hydroxymethyl-, 5-formyl- and 5-carboxydeoxycytidine (mdC, hmdC, fdC and cadC) form a second layer of epigenetic information that contributes to the regulation of gene expression. Formation of the oxidized nucleotides hmdC, fdC and cadC requires oxidation of mdC by ten-eleven translocation (Tet) enzymes that require oxygen, Fe(II) and a-ketoglutarate as cosubstrates. Although these oxidized forms of mdC are widespread in mammalian genomes, experimental evidence for their presence in fungi and plants is ambiguous. This vagueness is caused by the fact that these oxidized mdC derivatives are also formed as oxidative lesions, resulting in unclear basal levels that are likely to have no epigenetic function. Here, we report the xdC levels in the fungus Amanita muscaria in comparison to murine embryonic stem cells (mESCs), HEK cells and induced pluripotent stem cells (iPSCs), to obtain information about the basal levels of hmdC, fdC and cadC as DNA lesions in the genome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202100551DOI Listing
March 2021

The cGMP-Dependent Protein Kinase 2 Contributes to Cone Photoreceptor Degeneration in the -Deficient Mouse Model of Achromatopsia.

Int J Mol Sci 2020 Dec 23;22(1). Epub 2020 Dec 23.

Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-University, 81377 Munich, Germany.

Mutations in the gene, which encodes the A subunit of the cyclic guanosine monophosphate (cGMP)-gated cation channel in cone photoreceptor outer segments, cause total colour blindness, also referred to as achromatopsia. Cones lacking this channel protein are non-functional, accumulate high levels of the second messenger cGMP and degenerate over time after induction of ER stress. The cell death mechanisms that lead to loss of affected cones are only partially understood. Here, we explored the disease mechanisms in the knockout (KO) mouse model of achromatopsia. We found that another important effector of cGMP, the cGMP-dependent protein kinase 2 (Prkg2) is crucially involved in cGMP cytotoxicity of cones in KO mice. Virus-mediated knockdown or genetic ablation of in KO mice counteracted degeneration and preserved the number of cones. Analysis of markers of endoplasmic reticulum stress and unfolded protein response confirmed that induction of these processes in KO cones also depends on Prkg2. In conclusion, we identified Prkg2 as a novel key mediator of cone photoreceptor degeneration in achromatopsia. Our data suggest that this cGMP mediator could be a novel pharmacological target for future neuroprotective therapies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms22010052DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7793084PMC
December 2020

Recent evolution of a TET-controlled and DPPA3/STELLA-driven pathway of passive DNA demethylation in mammals.

Nat Commun 2020 11 24;11(1):5972. Epub 2020 Nov 24.

Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.

Genome-wide DNA demethylation is a unique feature of mammalian development and naïve pluripotent stem cells. Here, we describe a recently evolved pathway in which global hypomethylation is achieved by the coupling of active and passive demethylation. TET activity is required, albeit indirectly, for global demethylation, which mostly occurs at sites devoid of TET binding. Instead, TET-mediated active demethylation is locus-specific and necessary for activating a subset of genes, including the naïve pluripotency and germline marker Dppa3 (Stella, Pgc7). DPPA3 in turn drives large-scale passive demethylation by directly binding and displacing UHRF1 from chromatin, thereby inhibiting maintenance DNA methylation. Although unique to mammals, we show that DPPA3 alone is capable of inducing global DNA demethylation in non-mammalian species (Xenopus and medaka) despite their evolutionary divergence from mammals more than 300 million years ago. Our findings suggest that the evolution of Dppa3 facilitated the emergence of global DNA demethylation in mammals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-19603-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7686362PMC
November 2020

Distinct and stage-specific contributions of TET1 and TET2 to stepwise cytosine oxidation in the transition from naive to primed pluripotency.

Sci Rep 2020 07 21;10(1):12066. Epub 2020 Jul 21.

Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.

Cytosine DNA bases can be methylated by DNA methyltransferases and subsequently oxidized by TET proteins. The resulting 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) are considered demethylation intermediates as well as stable epigenetic marks. To dissect the contributions of these cytosine modifying enzymes, we generated combinations of Tet knockout (KO) embryonic stem cells (ESCs) and systematically measured protein and DNA modification levels at the transition from naive to primed pluripotency. Whereas the increase of genomic 5-methylcytosine (5mC) levels during exit from pluripotency correlated with an upregulation of the de novo DNA methyltransferases DNMT3A and DNMT3B, the subsequent oxidation steps turned out to be far more complex. The strong increase of oxidized cytosine bases (5hmC, 5fC, and 5caC) was accompanied by a drop in TET2 levels, yet the analysis of KO cells suggested that TET2 is responsible for most 5fC formation. The comparison of modified cytosine and enzyme levels in Tet KO cells revealed distinct and differentiation-dependent contributions of TET1 and TET2 to 5hmC and 5fC formation arguing against a processive mechanism of 5mC oxidation. The apparent independent steps of 5hmC and 5fC formation suggest yet to be identified mechanisms regulating TET activity that may constitute another layer of epigenetic regulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-68600-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374584PMC
July 2020

Influencing Epigenetic Information with a Hydrolytically Stable Carbocyclic 5-Aza-2'-deoxycytidine.

Angew Chem Int Ed Engl 2019 09 25;58(37):12984-12987. Epub 2019 Jul 25.

Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Munich, Germany.

5-Aza-2'-deoxycytidine (AzadC) is an antimetabolite in clinical use, which reduces the level of the epigenetic modification 5-methyl-2'-deoxycytidine (mdC). AzadC is incorporated into the genome of proliferating cells, where it inhibits DNA methyltransferases (DNMTs), leading to a reduction of mdC. The loss of mdC, which is a transcriptional silencer in the promoter region found upstream of genes, leads to the reactivation of the corresponding gene, including tumor-suppressor genes, which elicits a beneficial effect. The problem associated with AzadC is that the compound is hydrolytically unstable. It decomposes during treatment to a variety of poorly characterized hydrolysis products. After its incorporation into the genome, this hydrolytic instability generates abasic sites. It is consequently difficult to dissect whether the activity of the compound is caused by DNMT inhibition or more generally by DNA lesion formation. We now discovered that a disarmed version of AzadC, in which the ribose oxygen was replaced by a CH group, is surprisingly stable under a variety of pH values while keeping activity against the DNMTs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201904794DOI Listing
September 2019

Isotope-dilution mass spectrometry for exact quantification of noncanonical DNA nucleosides.

Nat Protoc 2019 01;14(1):283-312

Center for Integrated Protein Science Munich (CiPSM), Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.

DNA contains not only canonical nucleotides but also a variety of modifications of the bases. In particular, cytosine and adenine are frequently modified. Determination of the exact quantity of these noncanonical bases can contribute to the characterization of the state of a biological system, e.g., determination of disease or developmental processes, and is therefore extremely important. Here, we present a workflow that includes detailed description of critical sample preparation steps and important aspects of mass spectrometry analysis and validation. In this protocol, extraction and digestion of DNA by an optimized spin-column and enzyme-based method are described. Isotopically labeled standards are added in the course of DNA digestion, which allows exact quantification by isotope dilution mass spectrometry. To overcome the major bottleneck of such analyses, we developed a short (~14-min-per-sample) ultra-HPLC (UHPLC) and triple quadrupole mass spectrometric (QQQ-MS) method. Easy calculation of the modification abundance in the genome is possible with the provided evaluation sheets. Compared to alternative methods, the quantification procedure presented here allows rapid, ultrasensitive (low femtomole range) and highly reproducible quantification of different nucleosides in parallel. Including sample preparation and evaluation, quantification of DNA modifications can be achieved in less than a week.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41596-018-0094-6DOI Listing
January 2019

The chemistries and consequences of DNA and RNA methylation and demethylation.

RNA Biol 2017 09 25;14(9):1099-1107. Epub 2017 Apr 25.

a Department of Chemistry , Ludwig-Maximilians-Universität München , Butenandtstrasse, Munich , Germany.

Chemical modification of nucleobases plays an important role for the control of gene expression on different levels. That includes the modulation of translation by modified tRNA-bases or silencing and reactivation of genes by methylation and demethylation of cytosine in promoter regions. Especially dynamic methylation of adenine and cytosine is essential for cells to adapt to their environment or for the development of complex organisms from a single cell. Errors in the cytosine methylation pattern are associated with most types of cancer and bacteria use methylated nucleobases to resist antibiotics. This Point of View wants to shed light on the known and potential chemistry of DNA and RNA methylation and demethylation. Understanding the chemistry of these processes on a molecular level is the first step towards a deeper knowledge about their regulation and function and will help us to find ways how nucleobase methylation can be manipulated to treat diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/15476286.2017.1318241DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699545PMC
September 2017