Publications by authors named "Franz Dürrenberger"

7 Publications

  • Page 1 of 1

The Oral Ferroportin Inhibitor VIT-2763 Improves Erythropoiesis without Interfering with Iron Chelation Therapy in a Mouse Model of β-Thalassemia.

Int J Mol Sci 2021 Jan 16;22(2). Epub 2021 Jan 16.

Vifor (International) Ltd., Rechenstrasse 37, 9014 St. Gallen, Switzerland.

In β-thalassemia, ineffective erythropoiesis leads to anemia and systemic iron overload. The management of iron overload by chelation therapy is a standard of care. However, iron chelation does not improve the ineffective erythropoiesis. We recently showed that the oral ferroportin inhibitor VIT-2763 ameliorates anemia and erythropoiesis in the Hbb mouse model of β-thalassemia. In this study, we investigated whether concurrent use of the iron chelator deferasirox (DFX) and the ferroportin inhibitor VIT-2763 causes any pharmacodynamic interactions in the Hbb mouse model of β-thalassemia. Mice were treated with VIT-2763 or DFX alone or with the combination of both drugs once daily for three weeks. VIT-2763 alone or in combination with DFX improved anemia and erythropoiesis. VIT-2763 alone decreased serum iron and transferrin saturation (TSAT) but was not able to reduce the liver iron concentration. While DFX alone had no effect on TSAT and erythropoiesis, it significantly reduced the liver iron concentration alone and in the presence of VIT-2763. Our results clearly show that VIT-2763 does not interfere with the iron chelation efficacy of DFX. Furthermore, VIT-2763 retains its beneficial effects on improving ineffective erythropoiesis when combined with DFX in the Hbb mouse model. In conclusion, co-administration of the oral ferroportin inhibitor VIT-2763 and the iron chelator DFX is feasible and might offer an opportunity to improve both ineffective erythropoiesis and iron overload in β-thalassemia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms22020873DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830167PMC
January 2021

The RESOLUTE consortium: unlocking SLC transporters for drug discovery.

Authors:
Giulio Superti-Furga Daniel Lackner Tabea Wiedmer Alvaro Ingles-Prieto Barbara Barbosa Enrico Girardi Ulrich Goldmann Bettina Gürtl Kristaps Klavins Christoph Klimek Sabrina Lindinger Eva Liñeiro-Retes André C Müller Svenja Onstein Gregor Redinger Daniela Reil Vitaly Sedlyarov Gernot Wolf Matthew Crawford Robert Everley David Hepworth Shenping Liu Stephen Noell Mary Piotrowski Robert Stanton Hui Zhang Salvatore Corallino Andrea Faedo Maria Insidioso Giovanna Maresca Loredana Redaelli Francesca Sassone Lia Scarabottolo Michela Stucchi Paola Tarroni Sara Tremolada Helena Batoulis Andreas Becker Eckhard Bender Yung-Ning Chang Alexander Ehrmann Anke Müller-Fahrnow Vera Pütter Diana Zindel Bradford Hamilton Martin Lenter Diana Santacruz Coralie Viollet Charles Whitehurst Kai Johnsson Philipp Leippe Birgit Baumgarten Lena Chang Yvonne Ibig Martin Pfeifer Jürgen Reinhardt Julian Schönbett Paul Selzer Klaus Seuwen Charles Bettembourg Bruno Biton Jörg Czech Hélène de Foucauld Michel Didier Thomas Licher Vincent Mikol Antje Pommereau Frédéric Puech Veeranagouda Yaligara Aled Edwards Brandon J Bongers Laura H Heitman Ad P IJzerman Huub J Sijben Gerard J P van Westen Justine Grixti Douglas B Kell Farah Mughal Neil Swainston Marina Wright-Muelas Tina Bohstedt Nicola Burgess-Brown Liz Carpenter Katharina Dürr Jesper Hansen Andreea Scacioc Giulia Banci Claire Colas Daniela Digles Gerhard Ecker Barbara Füzi Viktoria Gamsjäger Melanie Grandits Riccardo Martini Florentina Troger Patrick Altermatt Cédric Doucerain Franz Dürrenberger Vania Manolova Anna-Lena Steck Hanna Sundström Maria Wilhelm Claire M Steppan

Nat Rev Drug Discov 2020 07;19(7):429-430

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/d41573-020-00056-6DOI Listing
July 2020

Oral ferroportin inhibitor VIT-2763: First-in-human, phase 1 study in healthy volunteers.

Am J Hematol 2020 01 19;95(1):68-77. Epub 2019 Nov 19.

Chemical and Preclinical Research and Development, Vifor (International) AG, St. Gallen, Switzerland.

Restriction of iron availability by ferroportin inhibition is a novel approach to treating non-transfusion-dependent thalassemia (β-thalassemia intermedia). This first-in-human, Phase I study (https://www.clinicaltrialsregister.eu; EudraCT no. 2017-003395-31) assessed the safety, tolerability, pharmacokinetics and pharmacodynamics of single- and multiple-ascending doses (SAD and MAD) of the oral ferroportin inhibitor, VIT-2763, in healthy volunteers. Participants received VIT-2763 5/15/60/120/240 mg or placebo in the SAD phase and VIT-2763 60/120 mg once daily, VIT-2763 60/120 mg twice daily, or placebo for 7 days in the MAD phase. Seventy-two participants completed treatment. VIT-2763 was well tolerated and demonstrated a similar safety profile to the placebo. There were no serious or severe adverse events, or discontinuations due to adverse events. VIT-2763 absorption was relatively fast, with detectable levels 15 to 30 minutes post-dose. Following multiple dosing there was no apparent change in absorption and accumulation was minimal. Mean elimination half-life was 1.9 to 5.3 hours following single dosing, and 2.1 to 3.8 hours on Day 1 and 2.6 to 5.3 hours on Day 7, following repeated dosing. There was a temporary decrease in mean serum iron levels with VIT-2763 single doses ≥60 mg and all multiple doses; mean calculated transferrin saturation (only assessed following multiple dosing) also temporarily decreased. A shift in mean serum hepcidin peaks followed administration of all iron-lowering doses of VIT-2763. This effect was less pronounced after 7 days of multiple dosing (aside from with 120 mg once daily). These results support the initiation of clinical studies in patients with non-transfusion-dependent thalassemia and documented iron overload due to ineffective erythropoiesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajh.25670DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6916274PMC
January 2020

Oral ferroportin inhibitor ameliorates ineffective erythropoiesis in a model of β-thalassemia.

J Clin Invest 2019 12 9;130(1):491-506. Epub 2019 Dec 9.

β-Thalassemia is a genetic anemia caused by partial or complete loss of β-globin synthesis, leading to ineffective erythropoiesis and RBCs with a short life span. Currently, there is no efficacious oral medication modifying anemia for patients with β-thalassemia. The inappropriately low levels of the iron regulatory hormone hepcidin enable excessive iron absorption by ferroportin, the unique cellular iron exporter in mammals, leading to organ iron overload and associated morbidities. Correction of unbalanced iron absorption and recycling by induction of hepcidin synthesis or treatment with hepcidin mimetics ameliorates β-thalassemia. However, hepcidin modulation or replacement strategies currently in clinical development all require parenteral drug administration. We identified oral ferroportin inhibitors by screening a library of small molecular weight compounds for modulators of ferroportin internalization. Restricting iron availability by VIT-2763, the first clinical stage oral ferroportin inhibitor, ameliorated anemia and the dysregulated iron homeostasis in the Hbbth3/+ mouse model of β-thalassemia intermedia. VIT-2763 not only improved erythropoiesis but also corrected the proportions of myeloid precursors in spleens of Hbbth3/+ mice. VIT-2763 is currently being developed as an oral drug targeting ferroportin for the treatment of β-thalassemia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI129382DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934209PMC
December 2019

Functional characterization of fluorescent hepcidin.

Bioconjug Chem 2013 Sep 14;24(9):1527-32. Epub 2013 Aug 14.

Chemical Biology Group, Institute of Pharmaceutical Sciences, and ‡Nutrition and Diabetes Research Group, King's College London , Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K.

Hepcidin is a peptide hormone that regulates homeostasis in iron metabolism. It binds to the sole known cellular iron exporter ferroportin (Fpn), triggers its internalization, and thereby modulates the efflux of iron from cells. This functional property has been adopted in this study to assess the bioactivity and potency of a range of novel fluorescent hepcidin analogues. Hepcidin was selectively labeled with 6-carboxyfluorescein (CF) and 6-carboxytetramethylrhodamine (TMR) using Fmoc solid phase peptide chemistry. Internalization of Fpn by hepcidin was assessed by high-content microscopic analysis. Both K18- and M21K-labeled hepcidin with TMR and CF exhibited measurable potency when tested in cultured MDCK and T47D cells expressing human ferroportin. The bioactivity of the labeled hepcidin varies with the type of fluorophore and site of attachment of the fluorophores on the hepcidin molecule.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bc400121xDOI Listing
September 2013

Cell-type specific calcium signaling by corticotropin-releasing factor type 1 (CRF1) and 2a (CRF2(a)) receptors: phospholipase C-mediated responses in human embryonic kidney 293 but not SK-N-MC neuroblastoma cells.

Biochem Pharmacol 2004 Nov;68(9):1833-44

Johnson and Johnson Research and Development, CNS Research, Turnhoutseweg 30, Beerse, Belgium.

The human corticotropin-releasing factor (hCRF) receptors CRF1 and CRF2(a) couple to the Gs protein. It has been postulated that CRF receptors may also signal through phospholipase C (PLC). To test this hypothesis, binding and signaling properties were determined for both receptor subtypes stably expressed in human embryonic kidney 293 (HEK293) and human SK-N-MC neuroblastoma cells. CRF receptors were highly expressed and strongly coupled to Gs in HEK293 and SK-N-MC cells. However, when the calcium mobilization pathway was investigated, marked differences were observed. In SK-N-MC cells, neither CRF receptor stimulated calcium mobilization in the fluorometric imaging plate reader (FLIPR) assay, whereas activation of orexin type 1 and 2 receptors stably expressed in SK-N-MC cells revealed robust calcium responses. In contrast, intracellular calcium was strongly mobilized by agonist stimulation of hCRF1 and hCRF2(a) receptors in HEK293 cells. In HEK293 cells, potency rank orders for calcium and cAMP responses were identical for both receptors, despite a rightward shift of the dose-response curves. Complete inhibition of calcium signaling of both hCRF1 and hCRF2(a) receptors was observed in the presence of the PLC inhibitor U-73,122 whereas ryanodine, an inhibitor of calcium release channels and the protein kinase A inhibitor Rp-cAMPS were ineffective. Finally, CRF agonists produced a small but significant stimulation of inositol 1,4,5-triphosphate (IP3) accumulation in hCRF1-and hCRF2(a)-transfected HEK293 cells. These data clearly show that phospholipase C-mediated signaling of CRF receptors is dependent upon the cellular background and that in HEK293 cells human CRF receptors robustly respond in the FLIPR format.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2004.07.013DOI Listing
November 2004

Structure-activity studies of orexin a and orexin B at the human orexin 1 and orexin 2 receptors led to orexin 2 receptor selective and orexin 1 receptor preferring ligands.

J Med Chem 2004 Feb;47(5):1153-60

Institute of Biochemistry, University of Leipzig, Germany.

The neuropeptides orexin A and B (also known as hypocretins) play an important role in many physiological and behavioral activities. Orexins are ligands of two closely related G-protein-coupled receptors, that are the named orexin 1 and orexin 2 receptors. To clearly identify the minimal ligand sequences required for receptor activation, we synthesized and analyzed different centrally, C- and N-terminally truncated analogues of orexins A and B. Furthermore, we used the shortest active analogue to screen for important amino acid residues by l-alanine and l-proline replacement scans. For orexin A, only full-length peptides were able to show the same activity as orexin A, but interestingly, reduced orexin A and natural orexin A, which contains the two disulfide bonds, had the same activity. The shortest highly active orexin B analogue was orexin B 6-28. In addition, we identified orexin A 2-33 as the first analogue with orexin 1 receptor preference and orexin B 10-28, [A27]orexin B 6-28, and [P11]orexin B 6-28 as being highly potent orexin 2 receptor selective (>1000-fold) peptides.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm030982tDOI Listing
February 2004