Publications by authors named "Francesca Vignolo Lutati"

4 Publications

  • Page 1 of 1

Analysis of Italian Pathogenic Variants Identifies a Private Spectrum in the Population from the Bergamo Province in Northern Italy.

Cancers (Basel) 2021 Jan 30;13(3). Epub 2021 Jan 30.

Genome Diagnostics Program, IFOM, FIRC Institute for Molecular Oncology, 20139 Milan, Italy.

Germline pathogenic variants (PVs) in the or genes cause high breast cancer risk. Recurrent or founder PVs have been described worldwide including some in the Bergamo province in Northern Italy. The aim of this study was to compare the PV spectra of the Bergamo and of the general Italian populations. We retrospectively identified at five Italian centers 1019 PVs carrier individuals affected with breast cancer and representative of the heterogeneous national population. Each individual was assigned to the Bergamo or non-Bergamo cohort based on self-reported birthplace. Our data indicate that the Bergamo PV spectrum shows less heterogeneity with fewer different variants and an average higher frequency compared to that of the rest of Italy. Consistently, four PVs explained about 60% of all carriers. The majority of the Bergamo PVs originated locally with only two PVs clearly imported. The Bergamo PV spectrum appears to be private. Hence, the Bergamo population would be ideal to study the disease risk associated with local PVs in breast cancer and other disease-causing genes. Finally, our data suggest that the Bergamo population is a genetic isolate and further analyses are warranted to prove this notion.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
January 2021

Sensitivity to asbestos is increased in patients with mesothelioma and pathogenic germline variants in BAP1 or other DNA repair genes.

Genes Chromosomes Cancer 2018 11;57(11):573-583

Department of Health Sciences, University of Piemonte Orientale, Novara, Italy.

Pathogenic germline variants in the BAP1 tumor suppressor gene can cause a cancer syndrome called BAP1 tumor predisposition syndrome (BAP1-TPDS), which is characterized by predisposition to mesothelioma, melanoma, renal cell carcinoma, basal cell carcinoma, and other tumors. Other genes that may predispose to mesothelioma are CDKN2A and DNA repair genes. Asbestos exposure has often been reported in patients with malignant pleural mesothelioma (MPM) and germline variants in BAP1, but this exposure has never been quantified. We aimed to search for germline variants in BAP1 among 25 new Italian probands with suspected BAP1-TPDS, summarize the prevalence of these variants in 39 Italian patients with familial MPM and other tumors recruited over a 5-year period, and compare cumulative asbestos exposure in 14 patients with MPM and pathogenic germline variants in BAP1, CDKN2A, or DNA repair genes with that of 67 patients without germline variants in 94 cancer-predisposing genes. We report here a new pathogenic germline variant in BAP1: c.783 + 2 T > C. The prevalence of pathogenic germline variants in BAP1 was 7.7% among patients with familial MPM (3/39). Patients with pathogenic germline variants in BAP1, CDKN2A, or DNA repair genes showed lower cumulative asbestos exposure than patients without germline variants in 94 cancer-predisposing genes (P = .00002). This suggests an interaction between genetic risk factors and asbestos in the development of mesothelioma.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
November 2018

PARP1 expression drives the synergistic antitumor activity of trabectedin and PARP1 inhibitors in sarcoma preclinical models.

Mol Cancer 2017 04 28;16(1):86. Epub 2017 Apr 28.

Sarcoma Unit, Medical Oncology, Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Torino, Italy.

Background: Enhancing the antitumor activity of the DNA-damaging drugs is an attractive strategy to improve current treatment options. Trabectedin is an isoquinoline alkylating agent with a peculiar mechanism of action. It binds to minor groove of DNA inducing single- and double-strand-breaks. These kinds of damage lead to the activation of PARP1, a first-line enzyme in DNA-damage response pathways. We hypothesized that PARP1 targeting could perpetuate trabectedin-induced DNA damage in tumor cells leading finally to cell death.

Methods: We investigated trabectedin and PARP1 inhibitor synergism in several tumor histotypes both in vitro and in vivo (subcutaneous and orthotopic tumor xenografts in mice). We searched for key determinants of drug synergism by comparative genomic hybridization (aCGH) and gene expression profiling (GEP) and validated their functional role.

Results: Trabectedin activated PARP1 enzyme and the combination with PARP1 inhibitors potentiated DNA damage, cell cycle arrest at G2/M checkpoint and apoptosis, if compared to single agents. Olaparib was the most active PARP1 inhibitor to combine with trabectedin and we confirmed the antitumor and antimetastatic activity of trabectedin/olaparib combination in mice models. However, we observed different degree of trabectedin/olaparib synergism among different cell lines. Namely, in DMR leiomyosarcoma models the combination was significantly more active than single agents, while in SJSA-1 osteosarcoma models no further advantage was obtained if compared to trabectedin alone. aCGH and GEP revealed that key components of DNA-repair pathways were involved in trabectedin/olaparib synergism. In particular, PARP1 expression dictated the degree of the synergism. Indeed, trabectedin/olaparib synergism was increased after PARP1 overexpression and reduced after PARP1 silencing.

Conclusions: PARP1 inhibition potentiated trabectedin activity in a PARP1-dependent manner and PARP1 expression in tumor cells might be a useful predictive biomarker that deserves clinical evaluation.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
April 2017

Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer.

JAMA 2015 Apr;313(13):1347-61

Department of Medicine and Genetics, University of California, San Francisco.

Importance: Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists.

Objective: To identify mutation-specific cancer risks for carriers of BRCA1/2.

Design, Setting, And Participants: Observational study of women who were ascertained between 1937 and 2011 (median, 1999) and found to carry disease-associated BRCA1 or BRCA2 mutations. The international sample comprised 19,581 carriers of BRCA1 mutations and 11,900 carriers of BRCA2 mutations from 55 centers in 33 countries on 6 continents. We estimated hazard ratios for breast and ovarian cancer based on mutation type, function, and nucleotide position. We also estimated RHR, the ratio of breast vs ovarian cancer hazard ratios. A value of RHR greater than 1 indicated elevated breast cancer risk; a value of RHR less than 1 indicated elevated ovarian cancer risk.

Exposures: Mutations of BRCA1 or BRCA2.

Main Outcomes And Measures: Breast and ovarian cancer risks.

Results: Among BRCA1 mutation carriers, 9052 women (46%) were diagnosed with breast cancer, 2317 (12%) with ovarian cancer, 1041 (5%) with breast and ovarian cancer, and 7171 (37%) without cancer. Among BRCA2 mutation carriers, 6180 women (52%) were diagnosed with breast cancer, 682 (6%) with ovarian cancer, 272 (2%) with breast and ovarian cancer, and 4766 (40%) without cancer. In BRCA1, we identified 3 breast cancer cluster regions (BCCRs) located at c.179 to c.505 (BCCR1; RHR = 1.46; 95% CI, 1.22-1.74; P = 2 × 10(-6)), c.4328 to c.4945 (BCCR2; RHR = 1.34; 95% CI, 1.01-1.78; P = .04), and c. 5261 to c.5563 (BCCR2', RHR = 1.38; 95% CI, 1.22-1.55; P = 6 × 10(-9)). We also identified an ovarian cancer cluster region (OCCR) from c.1380 to c.4062 (approximately exon 11) with RHR = 0.62 (95% CI, 0.56-0.70; P = 9 × 10(-17)). In BRCA2, we observed multiple BCCRs spanning c.1 to c.596 (BCCR1; RHR = 1.71; 95% CI, 1.06-2.78; P = .03), c.772 to c.1806 (BCCR1'; RHR = 1.63; 95% CI, 1.10-2.40; P = .01), and c.7394 to c.8904 (BCCR2; RHR = 2.31; 95% CI, 1.69-3.16; P = .00002). We also identified 3 OCCRs: the first (OCCR1) spanned c.3249 to c.5681 that was adjacent to c.5946delT (6174delT; RHR = 0.51; 95% CI, 0.44-0.60; P = 6 × 10(-17)). The second OCCR spanned c.6645 to c.7471 (OCCR2; RHR = 0.57; 95% CI, 0.41-0.80; P = .001). Mutations conferring nonsense-mediated decay were associated with differential breast or ovarian cancer risks and an earlier age of breast cancer diagnosis for both BRCA1 and BRCA2 mutation carriers.

Conclusions And Relevance: Breast and ovarian cancer risks varied by type and location of BRCA1/2 mutations. With appropriate validation, these data may have implications for risk assessment and cancer prevention decision making for carriers of BRCA1 and BRCA2 mutations.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
April 2015