Publications by authors named "Frédéric Moynier"

38 Publications

Calcium isotope evidence for early Archaean carbonates and subduction of oceanic crust.

Nat Commun 2021 05 5;12(1):2534. Epub 2021 May 5.

Institut de Physiques du Globe de Paris, Université de Paris, CNRS, UMR 7154, Paris, France.

Continents are unique to Earth and played a role in coevolution of the atmosphere, hydrosphere, and biosphere. Debate exists, however, regarding continent formation and the onset of subduction-driven plate tectonics. We present Ca isotope and trace-element data from modern and ancient (4.0 to 2.8 Ga) granitoids and phase equilibrium models indicating that Ca isotope fractionations are dominantly controlled by geothermal gradients. The results require gradients of 500-750 °C/GPa, as found in modern (hot) subduction-zones and consistent with the operation of subduction throughout the Archaean. Two granitoids from the Nuvvuagittuq Supracrustal Belt, Canada, however, cannot be explained through magmatic processes. Their isotopic signatures were likely inherited from carbonate sediments. These samples (> 3.8 Ga) predate the oldest known carbonates preserved in the rock record and confirm that carbonate precipitation in Eoarchaean oceans provided an important sink for atmospheric CO. Our results suggest that subduction-driven plate tectonic processes started prior to ~3.8 Ga.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-22748-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099908PMC
May 2021

Conditions and extent of volatile loss from the Moon during formation of the Procellarum basin.

Proc Natl Acad Sci U S A 2021 Mar;118(12)

Université de Paris, Institut de Physique du Globe de Paris, CNRS UMR 7154, 75005 Paris, France.

Rocks from the lunar interior are depleted in moderately volatile elements (MVEs) compared to terrestrial rocks. Most MVEs are also enriched in their heavier isotopes compared to those in terrestrial rocks. Such elemental depletion and heavy isotope enrichments have been attributed to liquid-vapor exchange and vapor loss from the protolunar disk, incomplete accretion of MVEs during condensation of the Moon, and degassing of MVEs during lunar magma ocean crystallization. New Monte Carlo simulation results suggest that the lunar MVE depletion is consistent with evaporative loss at 1,670 ± 129 K and an oxygen fugacity +2.3 ± 2.1 log units above the fayalite-magnetite-quartz buffer. Here, we propose that these chemical and isotopic features could have resulted from the formation of the putative Procellarum basin early in the Moon's history, during which nearside magma ocean melts would have been exposed at the surface, allowing equilibration with any primitive atmosphere together with MVE loss and isotopic fractionation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2023023118DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000422PMC
March 2021

The internal structure and geodynamics of Mars inferred from a 4.2-Gyr zircon record.

Proc Natl Acad Sci U S A 2020 12 16;117(49):30973-30979. Epub 2020 Nov 16.

Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, 1350 Copenhagen, Denmark;

Combining U-Pb ages with Lu-Hf data in zircon provides insights into the magmatic history of rocky planets. The Northwest Africa (NWA) 7034/7533 meteorites are samples of the southern highlands of Mars containing zircon with ages as old as 4476.3 ± 0.9 Ma, interpreted to reflect reworking of the primordial Martian crust by impacts. We extracted a statistically significant zircon population ( = 57) from NWA 7533 that defines a temporal record spanning 4.2 Gyr. Ancient zircons record ages from 4485.5 ± 2.2 Ma to 4331.0 ± 1.4 Ma, defining a bimodal distribution with groupings at 4474 ± 10 Ma and 4442 ± 17 Ma. We interpret these to represent intense bombardment episodes at the planet's surface, possibly triggered by the early migration of gas giant planets. The unradiogenic initial Hf-isotope composition of these zircons establishes that Mars's igneous activity prior to ∼4.3 Ga was limited to impact-related reworking of a chemically enriched, primordial crust. A group of younger detrital zircons record ages from 1548.0 ± 8.8 Ma to 299.5 ± 0.6 Ma. The only plausible sources for these grains are the temporally associated Elysium and Tharsis volcanic provinces that are the expressions of deep-seated mantle plumes. The chondritic-like Hf-isotope compositions of these zircons require the existence of a primitive and convecting mantle reservoir, indicating that Mars has been in a stagnant-lid tectonic regime for most of its history. Our results imply that zircon is ubiquitous on the Martian surface, providing a faithful record of the planet's magmatic history.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2016326117DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733809PMC
December 2020

Early oxidation of the martian crust triggered by impacts.

Sci Adv 2020 Oct 30;6(44). Epub 2020 Oct 30.

Université de Paris, Institut de physique du globe de Paris, CNRS, 75005 Paris, France.

Despite the abundant geomorphological evidence for surface liquid water on Mars during the Noachian epoch (>3.7 billion years ago), attaining a warm climate to sustain liquid water on Mars at the period of the faint young Sun is a long-standing question. Here, we show that melts of ancient mafic clasts from a martian regolith meteorite, NWA 7533, experienced substantial Fe-Ti oxide fractionation. This implies early, impact-induced, oxidation events that increased by five to six orders of magnitude the oxygen fugacity of impact melts from remelting of the crust. Oxygen isotopic compositions of sequentially crystallized phases from the clasts show that progressive oxidation was due to interaction with an O-rich water reservoir. Such an early oxidation of the crust by impacts in the presence of water may have supplied greenhouse gas H that caused an increase in surface temperature in a CO-thick atmosphere.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.abc4941DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7608801PMC
October 2020

Copper and zinc isotopic excursions in the human brain affected by Alzheimer's disease.

Alzheimers Dement (Amst) 2020 19;12(1):e12112. Epub 2020 Oct 19.

Centre de Neurologie Cognitive Hopital Lariboisière Fernand-Widal GHU Nord APHP Université de Paris, and Inserm Paris France.

Introduction: Alzheimer's disease (AD) is neuropathologically marked by amyloid beta (Aβ) plaques and neurofibrillary tangles. Little is known about isotopic compositions of human AD brains. Here we study this in comparison with control subjects for copper and zinc.

Methods: We use mass-spectrometry methods, developed to study extraterrestrial materials, to compare the copper and zinc isotopic composition of 10 AD and 10 control brains.

Results: Copper and zinc natural isotopic compositions of AD brains are statistically different compared to controls, and correlate with Braak stages.

Discussion: The distribution of natural copper and zinc isotopes in AD is not affected by the diet, but is a consequence of Aβ plaques and tau fibril accumulation. This is well predicted by the changes of the chemical bonding environment caused by the development of Aβ lesions and accumulation of tau proteins. Future work will involve testing whether these changes affect brain functions and are propagated to body fluids.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/dad2.12112DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571480PMC
October 2020

Longitudinal biometal accumulation and Ca isotope composition of the Göttingen minipig brain.

Metallomics 2020 10;12(10):1585-1598

Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75238 Paris, France.

Biometals play a critical role in both the healthy and diseased brain's functioning. They accumulate in the normal aging brain, and are inherent to neurodegenerative disorders and their associated pathologies. A prominent example of this is the brain accumulation of metals such as Ca, Fe and Cu (and more ambiguously, Zn) associated with Alzheimer's disease (AD). The natural stable isotope compositions of such metals have also shown utility in constraining biological mechanisms, and in differentiating between healthy and diseased states, sometimes prior to conventional methods. Here we have detailed the distribution of the biologically relevant elements Mg, P, K, Ca, Fe, Cu and Zn in brain regions of Göttingen minipigs ranging in age from three months to nearly six years, including control animals and both a single- and double-transgenic model of AD (PS1, APP/PS1). Moreover, we have characterized the Ca isotope composition of the brain for the first time. Concentration data track rises in brain biometals with age, namely for Fe and Cu, as observed in the normal ageing brain and in AD, and biometal data point to increased soluble amyloid beta (Aβ) load prior to AD plaque identification via brain imaging. Calcium isotope results define the brain as the isotopically lightest permanent reservoir in the body, indicating that brain Ca dyshomeostasis may induce measurable isotopic disturbances in accessible downstream reservoirs such as biofluids.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0mt00134aDOI Listing
October 2020

Significant Zr isotope variations in single zircon grains recording magma evolution history.

Proc Natl Acad Sci U S A 2020 Sep 18;117(35):21125-21131. Epub 2020 Aug 18.

Department of Geosciences, University of Arizona, Tucson, AZ 85718.

Zircons widely occur in magmatic rocks and often display internal zonation finely recording the magmatic history. Here, we presented in situ high-precision (2SD <0.15‰ for δZr) and high-spatial-resolution (20 µm) stable Zr isotope compositions of magmatic zircons in a suite of calc-alkaline plutonic rocks from the juvenile part of the Gangdese arc, southern Tibet. These zircon grains are internally zoned with Zr isotopically light cores and increasingly heavier rims. Our data suggest the preferential incorporation of lighter Zr isotopes in zircon from the melt, which would drive the residual melt to heavier values. The Rayleigh distillation model can well explain the observed internal zoning in single zircon grains, and the best-fit models gave average zircon-melt fractionation factors for each sample ranging from 0.99955 to 0.99988. The average fractionation factors are positively correlated with the median Ti-in-zircon temperatures, indicating a strong temperature dependence of Zr isotopic fractionation. The results demonstrate that in situ Zr isotope analyses would be another powerful contribution to the geochemical toolbox related to zircon. The findings of this study solve the fundamental issue on how zircon fractionates Zr isotopes in calc-alkaline magmas, the major type of magmas that led to forming continental crust over time. The results also show the great potential of stable Zr isotopes in tracing magmatic thermal and chemical evolution and thus possibly continental crustal differentiation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2002053117DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7474644PMC
September 2020

Calcium isotopic evidence for the mantle sources of carbonatites.

Sci Adv 2020 Jun 3;6(23):eaba3269. Epub 2020 Jun 3.

Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0244, USA.

The origin of carbonatites-igneous rocks with more than 50% of carbonate minerals-and whether they originate from a primary mantle source or from recycling of surface materials are still debated. Calcium isotopes have the potential to resolve the origin of carbonatites, since marine carbonates are enriched in the lighter isotopes of Ca compared to the mantle. Here, we report the Ca isotopic compositions for 74 carbonatites and associated silicate rocks from continental and oceanic settings, spanning from 3 billion years ago to the present day, together with O and C isotopic ratios for 37 samples. Calcium-, Mg-, and Fe-rich carbonatites have isotopically lighter Ca than mantle-derived rocks such as basalts and fall within the range of isotopically light Ca from ancient marine carbonates. This signature reflects the composition of the source, which is isotopically light and is consistent with recycling of surface carbonate materials into the mantle.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.aba3269DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7269651PMC
June 2020

Isotope metallomics approaches for medical research.

Cell Mol Life Sci 2020 Sep 4;77(17):3293-3309. Epub 2020 Mar 4.

Thermo Fisher Isotope Development Hub, Department of Earth and Environmental Sciences, Macquarie University, Sydney, NSW, 2109, Australia.

Metallomics is a rapidly evolving field of bio-metal research that integrates techniques and perspectives from other "-omics" sciences (e.g. genomics, proteomics) and from research vocations further afield. Perhaps the most esoteric of this latter category has been the recent coupling of biomedicine with element and isotope geochemistry, commonly referred to as isotope metallomics. Over the course of less than two decades, isotope metallomics has produced numerous benchmark studies highlighting the use of stable metal isotope distribution in developing disease diagnostics-e.g. cancer, neurodegeneration, osteoporosis-as well as their utility in deciphering the underlying mechanisms of such diseases. These pioneering works indicate an enormous wealth of potential and provide a call to action for researchers to combine and leverage expertise and resources to create a clear and meaningful path forward. Doing so with efficacy and impact will require not only building on existing research, but also broadening collaborative networks, bolstering and deepening cross-disciplinary channels, and establishing unified and realizable objectives. The aim of this review is to briefly summarize the field and its underpinnings, provide a directory of the state of the art, outline the most encouraging paths forward, including their limitations, outlook and speculative upcoming breakthroughs, and finally to offer a vision of how to cultivate isotope metallomics for an impactful future.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00018-020-03484-0DOI Listing
September 2020

A unifying model for the accretion of chondrules and matrix.

Proc Natl Acad Sci U S A 2019 09 4;116(38):18860-18866. Epub 2019 Sep 4.

Laboratoire Domaines Océaniques UMR/CNRS 6538, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Technopôle Brest-Iroise, 29280 Plouzané, France.

The so far unique role of our Solar System in the universe regarding its capacity for life raises fundamental questions about its formation history relative to exoplanetary systems. Central in this research is the accretion of asteroids and planets from a gas-rich circumstellar disk and the final distribution of their mass around the Sun. The key building blocks of the planets may be represented by chondrules, the main constituents of chondritic meteorites, which in turn are primitive fragments of planetary bodies. Chondrule formation mechanisms, as well as their subsequent storage and transport in the disk, are still poorly understood, and their origin and evolution can be probed through their link (i.e., complementary or noncomplementary) to fine-grained dust (matrix) that accreted together with chondrules. Here, we investigate the apparent chondrule-matrix complementarity by analyzing major, minor, and trace element compositions of chondrules and matrix in altered and relatively unaltered CV, CM, and CR (Vigarano-type, Mighei-type, and Renazzo-type) chondrites. We show that matrices of the most unaltered CM and CV chondrites are overall CI-like (Ivuna-type) (similar to solar composition) and do not reflect any volatile enrichment or elemental patterns complementary to chondrules, the exception being their Fe/Mg ratios. We propose to unify these contradictory data by invoking a chondrule formation model in which CI-like dust accreted to so-called armored chondrules, which are ubiquitous in many chondrites. Metal rims expelled during chondrule formation, but still attached to their host chondrule, interacted with the accreted matrix, thereby enriching the matrix in siderophile elements and generating an apparent complementarity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1907592116DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6754599PMC
September 2019

Serum and brain natural copper stable isotopes in a mouse model of Alzheimer's disease.

Sci Rep 2019 08 15;9(1):11894. Epub 2019 Aug 15.

Université de Paris, LVTS, Inserm U1148, F-75018, Paris, France.

Alzheimer's disease is associated with the production of Cu rich aβ fibrils. Because monitoring the changes in Cu level of organs has been proposed to follow the evolution of the disease, we analyzed the copper isotopic composition of serum and brain of APPswe/PSEN1dE9 transgenic mice, a model of Alzheimer's disease, and wild-type (WT) controls. Serum composition of 3, 6, 9 and 12-month-old mice, as well as the composition of 9 brains of 12-month-old mice are reported. In WT mice, brains were ~1‰ isotopically heavier than serum, and the Cu isotopic composition of the serum was isotopically different between males and females. We propose that this effect of sex on the Cu isotopic budget of the serum may be related to a difference of Cu speciation and relative abundance of Cu carriers. Brains of APPswe/PSEN1dE9 mice were slightly lighter than brains of WT mice, while not statistically significant. This trend may reflect an increase of Cu(I) associated with the formation of Aβ fibrils. The Cu isotopic composition of the brains and serum were correlated, implying copper transport between these two reservoirs, in particular a transfer of Cu(I) from the brain to the serum. Altogether, these data suggest that Cu stable isotopic composition of body fluid may have the potential to be used as detection tools for the formation of Aβ fibrils in the brain, but further work has to be done.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-47790-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695409PMC
August 2019

Titanium isotopes as a tracer for the plume or island arc affinity of felsic rocks.

Proc Natl Acad Sci U S A 2019 01 3;116(4):1132-1135. Epub 2019 Jan 3.

Institut de Physique du Globe de Paris, Université Paris Diderot, Université Sorbonne Paris Cité, CNRS UMR 7154, 75005 Paris, France.

Indirect evidence for the presence of a felsic continental crust, such as the elevated Ti/Ti ratios in Archean shales, has been used to argue for ongoing subduction at that time and therefore plate tectonics. However, rocks of intermediate to felsic compositions can be produced in both plume and island arc settings. The fact that Ti behaves differently during magma differentiation in these two geological settings might result in contrasting isotopic signatures. Here, we demonstrate that, at a given SiO content, evolved plume rocks (tholeiitic) are more isotopically fractionated in Ti than differentiated island arc rocks (mainly calc-alkaline). We also show that the erosion of crustal rocks from whether plumes (mafic in average) or island arcs (intermediate in average) can all produce sediments having quite constant Ti/Ti ratios being 0.1-0.3 per mille heavier than that of the mantle. This suggests that Ti isotopes are not a direct tracer for the SiO contents of crustal rocks. Ti isotopes in crustal sediments are still a potential proxy to identify the geodynamical settings for the formation of the crust but only if combined with additional SiO information.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1809164116DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347677PMC
January 2019

Martian magmatism from plume metasomatized mantle.

Nat Commun 2018 11 15;9(1):4799. Epub 2018 Nov 15.

Department of Civil and Environmental Engineering and Earth Science, University of Notre Dame, Notre Dame, IN, 46556, USA.

Direct analysis of the composition of Mars is possible through delivery of meteorites to Earth. Martian meteorites include ∼165 to 2400 Ma shergottites, originating from depleted to enriched mantle sources, and ∼1340 Ma nakhlites and chassignites, formed by low degree partial melting of a depleted mantle source. To date, no unified model has been proposed to explain the petrogenesis of these distinct rock types, despite their importance for understanding the formation and evolution of Mars. Here we report a coherent geochemical dataset for shergottites, nakhlites and chassignites revealing fundamental differences in sources. Shergottites have lower Nb/Y at a given Zr/Y than nakhlites or chassignites, a relationship nearly identical to terrestrial Hawaiian main shield and rejuvenated volcanism. Nakhlite and chassignite compositions are consistent with melting of hydrated and metasomatized depleted mantle lithosphere, whereas shergottite melts originate from deep mantle sources. Generation of martian magmas can be explained by temporally distinct melting episodes within and below dynamically supported and variably metasomatized lithosphere, by long-lived, static mantle plumes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-07191-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6237973PMC
November 2018

Volatile loss following cooling and accretion of the Moon revealed by chromium isotopes.

Proc Natl Acad Sci U S A 2018 10 8;115(43):10920-10925. Epub 2018 Oct 8.

Institut de Physique du Globe de Paris, Université Paris Diderot, Université Sorbonne Paris Cité, CNRS UMR 7154, 75238 Paris Cedex 05, France.

Terrestrial and lunar rocks share chemical and isotopic similarities in refractory elements, suggestive of a common precursor. By contrast, the marked depletion of volatile elements in lunar rocks together with their enrichment in heavy isotopes compared with Earth's mantle suggests that the Moon underwent evaporative loss of volatiles. However, whether equilibrium prevailed during evaporation and, if so, at what conditions (temperature, pressure, and oxygen fugacity) remain unconstrained. Chromium may shed light on this question, as it has several thermodynamically stable, oxidized gas species that can distinguish between kinetic and equilibrium regimes. Here, we present high-precision Cr isotope measurements in terrestrial and lunar rocks that reveal an enrichment in the lighter isotopes of Cr in the Moon compared with Earth's mantle by 100 ± 40 ppm per atomic mass unit. This observation is consistent with Cr partitioning into an oxygen-rich vapor phase in equilibrium with the proto-Moon, thereby stabilizing the CrO species that is isotopically heavy compared with CrO in a lunar melt. Temperatures of 1,600-1,800 K and oxygen fugacities near the fayalite-magnetite-quartz buffer are required to explain the elemental and isotopic difference of Cr between Earth's mantle and the Moon. These temperatures are far lower than modeled in the aftermath of a giant impact, implying that volatile loss did not occur contemporaneously with impact but following cooling and accretion of the Moon.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1809060115DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205496PMC
October 2018

Examining the homeostatic distribution of metals and Zn isotopes in Göttingen minipigs.

Metallomics 2018 09;10(9):1264-1281

Institut de Physique du Globe de Paris, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7154, 1 rue Jussieu, 75238 Paris Cedex 05, France.

The role of metals in biologic systems is manifold, and understanding their behaviour in bodily processes, especially those relating to neurodegenerative diseases, is at the forefront of medical science. The function(s) of metals - such as the transition metals - and their utility in both the diagnosis and treatment of diseases in human beings, is often examined via the characterization of their distribution in animal models, with porcine models considered exceptional proxies for human physiology. To this end, we have investigated the homeostatic distribution of numerous metals (Mg, K, Ca, Mn, Fe, Cu, Zn, Rb and Mo), the non-metal P, and Zn isotopes in the organs and blood (red blood cells, plasma) of Göttingen minipigs. These results represent the first set of data outlining the homeostatic distribution of metals and Zn isotopes in Göttingen minipigs, and indicate a relatively homogeneous distribution of alkali/alkaline earth metals and P among the organs, with generally lower levels in the blood, while indicating more heterogeneous and systematic abundance patterns for transition metals. In general, the distribution of all elements analysed is similar to that found in humans. Our elemental abundance data, together with data reported for humans in the literature, suggest that element-to-element ratios, e.g. Cu/Mg, show potential as simple diagnostics for diseases such as Alzheimer's. Isotopic data indicate a heterogeneous distribution of Zn isotopes among the organs and blood, with the liver, heart and brain being the most depleted in heavy Zn isotopes, and the blood the most enriched, consistent with observations in other animal models and humans. The Zn isotopic composition of Göttingen minipigs displays a systematic offset towards lighter δ66Zn values relative to mice and sheep models, suggesting physiology that is more closely aligned with that of humans. Cumulatively, these observations strongly suggest that Göttingen minipigs are an excellent animal model for translational research involving metals, and these data provide a strong foundation for future research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8mt00179kDOI Listing
September 2018

Volatile element evolution of chondrules through time.

Proc Natl Acad Sci U S A 2018 08 6;115(34):8547-8552. Epub 2018 Aug 6.

Institut de Physique du Globe de Paris, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7154, 75238 Paris Cedex 05, France.

Chondrites and their main components, chondrules, are our guides into the evolution of the Solar System. Investigating the history of chondrules, including their volatile element history and the prevailing conditions of their formation, has implications not only for the understanding of chondrule formation and evolution but for that of larger bodies such as the terrestrial planets. Here we have determined the bulk chemical composition-rare earth, refractory, main group, and volatile element contents-of a suite of chondrules previously dated using the Pb-Pb system. The volatile element contents of chondrules increase with time from ∼1 My after Solar System formation, likely the result of mixing with a volatile-enriched component during chondrule recycling. Variations in the Mn/Na ratios signify changes in redox conditions over time, suggestive of decoupled oxygen and volatile element fugacities, and indicating a decrease in oxygen fugacity and a relative increase in the fugacities of in-fluxing volatiles with time. Within the context of terrestrial planet formation via pebble accretion, these observations corroborate the early formation of Mars under relatively oxidizing conditions and the protracted growth of Earth under more reducing conditions, and further suggest that water and volatile elements in the inner Solar System may not have arrived pairwise.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1807263115DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6112700PMC
August 2018

Evidence for extremely rapid magma ocean crystallization and crust formation on Mars.

Nature 2018 06 27;558(7711):586-589. Epub 2018 Jun 27.

Centre for Star and Planet Formation and Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.

The formation of a primordial crust is a critical step in the evolution of terrestrial planets but the timing of this process is poorly understood. The mineral zircon is a powerful tool for constraining crust formation because it can be accurately dated with the uranium-to-lead (U-Pb) isotopic decay system and is resistant to subsequent alteration. Moreover, given the high concentration of hafnium in zircon, the lutetium-to-hafnium (Lu-Hf) isotopic decay system can be used to determine the nature and formation timescale of its source reservoir. Ancient igneous zircons with crystallization ages of around 4,430 million years (Myr) have been reported in Martian meteorites that are believed to represent regolith breccias from the southern highlands of Mars. These zircons are present in evolved lithologies interpreted to reflect re-melted primary Martian crust , thereby potentially providing insight into early crustal evolution on Mars. Here, we report concomitant high-precision U-Pb ages and Hf-isotope compositions of ancient zircons from the NWA 7034 Martian regolith breccia. Seven zircons with mostly concordant U-Pb ages define Pb/Pb dates ranging from 4,476.3 ± 0.9 Myr ago to 4,429.7 ± 1.0 Myr ago, including the oldest directly dated material from Mars. All zircons record unradiogenic initial Hf-isotope compositions inherited from an enriched, andesitic-like crust extracted from a primitive mantle no later than 4,547 Myr ago. Thus, a primordial crust existed on Mars by this time and survived for around 100 Myr before it was reworked, possibly by impacts, to produce magmas from which the zircons crystallized. Given that formation of a stable primordial crust is the end product of planetary differentiation, our data require that the accretion, core formation and magma ocean crystallization on Mars were completed less than 20 Myr after the formation of the Solar System. These timescales support models that suggest extremely rapid magma ocean crystallization leading to a gravitationally unstable stratified mantle, which subsequently overturns, resulting in decompression melting of rising cumulates and production of a primordial basaltic to andesitic crust.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-018-0222-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107064PMC
June 2018

Late-stage magmatic outgassing from a volatile-depleted Moon.

Proc Natl Acad Sci U S A 2017 09 21;114(36):9547-9551. Epub 2017 Aug 21.

Institute of Meteoritics, University of New Mexico, Albuquerque, NM 87131.

The abundance of volatile elements and compounds, such as zinc, potassium, chlorine, and water, provide key evidence for how Earth and the Moon formed and evolved. Currently, evidence exists for a Moon depleted in volatile elements, as well as reservoirs within the Moon with volatile abundances like Earth's depleted upper mantle. Volatile depletion is consistent with catastrophic formation, such as a giant impact, whereas a Moon with Earth-like volatile abundances suggests preservation of these volatiles, or addition through late accretion. We show, using the "Rusty Rock" impact melt breccia, 66095, that volatile enrichment on the lunar surface occurred through vapor condensation. Isotopically light Zn (δZn = -13.7‰), heavy Cl (δCl = +15‰), and high U/Pb supports the origin of condensates from a volatile-poor internal source formed during thermomagmatic evolution of the Moon, with long-term depletion in incompatible Cl and Pb, and lesser depletion of more-compatible Zn. Leaching experiments on mare basalt 14053 demonstrate that isotopically light Zn condensates also occur on some mare basalts after their crystallization, confirming a volatile-depleted lunar interior source with homogeneous δZn ≈ +1.4‰. Our results show that much of the lunar interior must be significantly depleted in volatile elements and compounds and that volatile-rich rocks on the lunar surface formed through vapor condensation. Volatiles detected by remote sensing on the surface of the Moon likely have a partially condensate origin from its interior.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1708236114DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5594690PMC
September 2017

Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules.

Sci Adv 2017 08 9;3(8):e1700407. Epub 2017 Aug 9.

Centre for Star and Planet Formation, University of Copenhagen, Copenhagen, Denmark.

The most abundant components of primitive meteorites (chondrites) are millimeter-sized glassy spherical chondrules formed by transient melting events in the solar protoplanetary disk. Using Pb-Pb dates of 22 individual chondrules, we show that primary production of chondrules in the early solar system was restricted to the first million years after the formation of the Sun and that these existing chondrules were recycled for the remaining lifetime of the protoplanetary disk. This finding is consistent with a primary chondrule formation episode during the early high-mass accretion phase of the protoplanetary disk that transitions into a longer period of chondrule reworking. An abundance of chondrules at early times provides the precursor material required to drive the efficient and rapid formation of planetary objects via chondrule accretion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.1700407DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550225PMC
August 2017

Zhamanshin astrobleme provides evidence for carbonaceous chondrite and post-impact exchange between ejecta and Earth's atmosphere.

Nat Commun 2017 08 9;8(1):227. Epub 2017 Aug 9.

Nuclear Physics Institute of the Czech Academy of Sciences, v.v.i., Husinec-Řež, CZ-250 68, Czech Republic.

Chemical fingerprints of impacts are usually compromised by extreme conditions in the impact plume, and the contribution of projectile matter to impactites does not often exceed a fraction of per cent. Here we use chromium and oxygen isotopes to identify the impactor and impact-plume processes for Zhamanshin astrobleme, Kazakhstan. εCr values up to 1.54 in irghizites, part of the fallback ejecta, represent the Cr-rich extremity of the Solar System range and suggest a CI-like chondrite impactor. ΔO values as low as -0.22‰ in irghizites, however, are incompatible with a CI-like impactor. We suggest that the observed O depletion in irghizites relative to the terrestrial range is caused by partial isotope exchange with atmospheric oxygen (ΔO = -0.47‰) following material ejection. In contrast, combined ΔO-εCr data for central European tektites (distal ejecta) fall into the terrestrial range and neither impactor fingerprint nor oxygen isotope exchange with the atmosphere are indicated.Identifying the original impactor from craters remains challenging. Here, the authors use chromium and oxygen isotopes to indicate that the Zhamanshin astrobleme impactor was a carbonaceous chrondrite by demonstrating that depleted 17O values are due to exchange with atmospheric oxygen.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-017-00192-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550458PMC
August 2017

Gallium isotopic evidence for extensive volatile loss from the Moon during its formation.

Sci Adv 2017 07 28;3(7):e1700571. Epub 2017 Jul 28.

Institut de Physique du Globe de Paris, Université Paris Diderot, Institut Universitaire de France, Paris, France.

The distribution and isotopic composition of volatile elements in planetary materials holds a key to the characterization of the early solar system and the Moon's formation. The Moon and Earth are chemically and isotopically very similar. However, the Moon is highly depleted in volatile elements and the origin of this depletion is still debated. We present gallium isotopic and elemental measurements in a large set of lunar samples to constrain the origin of this volatile depletion. We show that while Ga has a geochemical behavior different from zinc, both elements show a systematic enrichment in the heavier isotopes in lunar mare basalts and Mg-suite rocks compared to the silicate Earth, pointing to a global-scale depletion event. On the other hand, the ferroan anorthosites are isotopically heterogeneous, suggesting a secondary distribution of Ga at the surface of the Moon by volatilization and condensation. The isotopic difference of Ga between Earth and the Moon and the isotopic heterogeneity of the crustal ferroan anorthosites suggest that the volatile depletion occurred following the giant impact and during the lunar magma ocean phase. These results point toward a Moon that has lost its volatile elements during a whole-scale evaporation event and that is now relatively dry compared to Earth.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.1700571DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5533533PMC
July 2017

Theoretical isotopic fractionation of magnesium between chlorophylls.

Sci Rep 2017 08 1;7(1):6973. Epub 2017 Aug 1.

Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Magnesium is the metal at the center of all types of chlorophyll and is thus crucial to photosynthesis. When an element is involved in a biosynthetic pathway its isotopes are fractionated based on the difference of vibrational frequency between the different molecules. With the technical advance of multi-collectors plasma-mass-spectrometry and improvement in analytical precision, it has recently been found that two types of chlorophylls (a and b) are isotopically distinct. These results have very significant implications with regards to the use of Mg isotopes to understand the biosynthesis of chlorophyll. Here we present theoretical constraints on the origin of these isotopic fractionations through ab initio calculations. We present the fractionation factor for chlorphyll a, b, d, and f. We show that the natural isotopic variations among chlorophyll a and b are well explained by isotopic fractionation under equilibrium, which implies exchanges of Mg during the chlorophyll cycle. We predict that chlorophyll d and f should be isotopically fractionated compared to chlorophyll a and that this could be used in the future to understand the biosynthesis of these molecules.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-017-07305-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539320PMC
August 2017

Calcium isotope fractionation between aqueous compounds relevant to low-temperature geochemistry, biology and medicine.

Sci Rep 2017 03 9;7:44255. Epub 2017 Mar 9.

Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

Stable Ca isotopes are fractionated between bones, urine and blood of animals and between soils, roots and leaves of plants by >1000 ppm for the Ca/Ca ratio. These isotopic variations have important implications to understand Ca transport and fluxes in living organisms; however, the mechanisms of isotopic fractionation are unclear. Here we present ab initio calculations for the isotopic fractionation between various aqueous species of Ca and show that this fractionation can be up to 3000 ppm. We show that the Ca isotopic fractionation between soil solutions and plant roots can be explained by the difference of isotopic fractionation between the different first shell hydration degree of Ca and that the isotopic fractionation between roots and leaves is controlled by the precipitation of Ca-oxalates. The isotopic fractionation between blood and urine is due to the complexation of heavy Ca with citrate and oxalates in urine. Calculations are presented for additional Ca species that may be useful to interpret future Ca isotopic measurements.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep44255DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343585PMC
March 2017

Evaporative fractionation of zinc during the first nuclear detonation.

Sci Adv 2017 Feb 8;3(2):e1602668. Epub 2017 Feb 8.

Lyndon B. Johnson Space Center, Houston, TX 77058, USA.

Volatile element and compound abundances vary widely in planets and were set during the earliest stages of solar system evolution. Experiments or natural analogs approximating these early conditions are limited. Using silicate glass formed from arkosic sands during the first nuclear detonation at the Trinity test site, New Mexico, we show that the isotopes of zinc were fractionated during evaporation. The green silicate glasses, termed "trinitite," show +0.5 ± 0.1‰/atomic mass unit isotopic fractionation from ~200 m to within 10 m of ground zero of the detonation, corresponding to an α fractionation factor between 0.999 and 0.9995. These results confirm that Zn isotopic fractionation occurs through evaporation processes at high temperatures. Evidence for similar fractionations in lunar samples consequently implies a volatile-depleted bulk Moon, with evaporation occurring during a giant impact or in a magma ocean.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.1602668DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5298851PMC
February 2017

Extensive volatile loss during formation and differentiation of the Moon.

Nat Commun 2015 Jul 3;6:7617. Epub 2015 Jul 3.

Geosciences Research Division, Scripps Institution of Oceanography, La Jolla, California 92093-0244, USA.

Low estimated lunar volatile contents, compared with Earth, are a fundamental observation for Earth-Moon system formation and lunar evolution. Here we present zinc isotope and abundance data for lunar crustal rocks to constrain the abundance of volatiles during the final stages of lunar differentiation. We find that ferroan anorthosites are isotopically heterogeneous, with some samples exhibiting high δ(66)Zn, along with alkali and magnesian suite samples. Since the plutonic samples were formed in the lunar crust, they were not subjected to degassing into vacuum. Instead, their compositions are consistent with enrichment of the silicate portions of the Moon in the heavier Zn isotopes. Because of the difference in δ(66)Zn between bulk silicate Earth and lunar basalts and crustal rocks, the volatile loss likely occurred in two stages: during the proto-lunar disk stage, where a fraction of lunar volatiles accreted onto Earth, and from degassing of a differentiating lunar magma ocean, implying the possibility of isolated, volatile-rich regions in the Moon's interior.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms8617DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506521PMC
July 2015

High precision zinc isotopic measurements applied to mouse organs.

J Vis Exp 2015 May 22(99):e52479. Epub 2015 May 22.

INSERM (Institut National de la Santé et de la Recherche Médicale), U1148: Laboratory for Vascular Translational Science, Université Paris Diderot.

We present a procedure to measure with high precision zinc isotope ratios in mouse organs. Zinc is composed of 5 stable isotopes ((64)Zn, (66)Zn, (67)Zn, (68)Zn and (70)Zn) which are naturally fractionated between mouse organs. We first show how to dissolve the different organs in order to free the Zn atoms; this step is realized by a mixture of HNO3 and H2O2. We then purify the zinc atoms from all the other elements, in particular from isobaric interferences (e.g., Ni), by anion-exchange chromatography in a dilute HBr/HNO3 medium. These first two steps are performed in a clean laboratory using high purity chemicals. Finally, the isotope ratios are measured by using a multi-collector inductively-coupled-plasma mass-spectrometer, in low resolution. The samples are injected using a spray chamber and the isotopic fractionation induced by the mass-spectrometer is corrected by comparing the ratio of the samples to the ratio of a standard (standard bracketing technique). This full typical procedure produces an isotope ratio with a 50 ppm (2 s.d.) reproducibility.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3791/52479DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542965PMC
May 2015

Silicon isotopes in angrites and volatile loss in planetesimals.

Proc Natl Acad Sci U S A 2014 Dec 17;111(48):17029-32. Epub 2014 Nov 17.

Université de Brest, Institut Universitaire Européen de la Mer, 29280 Plouzané, France.

Inner solar system bodies, including the Earth, Moon, and asteroids, are depleted in volatile elements relative to chondrites. Hypotheses for this volatile element depletion include incomplete condensation from the solar nebula and volatile loss during energetic impacts. These processes are expected to each produce characteristic stable isotope signatures. However, processes of planetary differentiation may also modify the isotopic composition of geochemical reservoirs. Angrites are rare meteorites that crystallized only a few million years after calcium-aluminum-rich inclusions and exhibit extreme depletions in volatile elements relative to chondrites, making them ideal samples with which to study volatile element depletion in the early solar system. Here we present high-precision Si isotope data that show angrites are enriched in the heavy isotopes of Si relative to chondritic meteorites by 50-100 ppm/amu. Silicon is sufficiently volatile such that it may be isotopically fractionated during incomplete condensation or evaporative mass loss, but theoretical calculations and experimental results also predict isotope fractionation under specific conditions of metal-silicate differentiation. We show that the Si isotope composition of angrites cannot be explained by any plausible core formation scenario, but rather reflects isotope fractionation during impact-induced evaporation. Our results indicate planetesimals initially formed from volatile-rich material and were subsequently depleted in volatile elements during accretion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1418889111DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260610PMC
December 2014

Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon.

Philos Trans A Math Phys Eng Sci 2014 Sep;372(2024):20130259

Institut de Physique du Globe de Paris, Université Paris Diderot, Sorbonne Paris Cité, 1 rue Jussieu, 75005 Paris, France.

The Moon is depleted in volatile elements relative to the Earth and Mars. Low abundances of volatile elements, fractionated stable isotope ratios of S, Cl, K and Zn, high μ ((238)U/(204)Pb) and long-term Rb/Sr depletion are distinguishing features of the Moon, relative to the Earth. These geochemical characteristics indicate both inheritance of volatile-depleted materials that formed the Moon and planets and subsequent evaporative loss of volatile elements that occurred during lunar formation and differentiation. Models of volatile loss through localized eruptive degassing are not consistent with the available S, Cl, Zn and K isotopes and abundance data for the Moon. The most probable cause of volatile depletion is global-scale evaporation resulting from a giant impact or a magma ocean phase where inefficient volatile loss during magmatic convection led to the present distribution of volatile elements within mantle and crustal reservoirs. Problems exist for models of planetary volatile depletion following giant impact. Most critically, in this model, the volatile loss requires preferential delivery and retention of late-accreted volatiles to the Earth compared with the Moon. Different proportions of late-accreted mass are computed to explain present-day distributions of volatile and moderately volatile elements (e.g. Pb, Zn; 5 to >10%) relative to highly siderophile elements (approx. 0.5%) for the Earth. Models of early magma ocean phases may be more effective in explaining the volatile loss. Basaltic materials (e.g. eucrites and angrites) from highly differentiated airless asteroids are volatile-depleted, like the Moon, whereas the Earth and Mars have proportionally greater volatile contents. Parent-body size and the existence of early atmospheres are therefore likely to represent fundamental controls on planetary volatile retention or loss.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2013.0259DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128272PMC
September 2014

Heterogeneous distribution of natural zinc isotopes in mice.

Metallomics 2013 Jun;5(6):693-9

Department of Earth and Planetary Science and McDonnell Center for Space Sciences, Washington University, St Louis, USA.

Zinc (Zn) is required for the function of more than 300 enzymes involved in many metabolic pathways, and is a vital micronutrient for living organisms. To investigate if Zn isotopes could be used to better understand metal homeostasis, as well as a biomarker for diseases, we assessed the distribution of natural Zn isotopes in various mouse tissues. We found that, with respect to Zn isotopes, most mouse organs are isotopically distinct and that the total range of variation within one mouse encompasses the variations observed in the Earth's crust. Therefore, biological activity may have a major impact on the distribution of Zn isotopes in inorganic materials. The most striking aspect of the data is that red blood cells and bones are enriched by ~0.5 per mil in (66)Zn relative to (64)Zn when compared to serum, and up to ~1 per mil when compared to the brain and liver. This fractionation is well explained by the equilibrium distribution of isotopes between different bonding environments of Zn in different organs. Differences in gender and genetic background did not appear to affect the isotopic distribution of Zn. Together, these results suggest the potential use of Zn isotopes as a tracer for dietary Zn, and for detecting disturbances in Zn metabolism due to pathological conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3mt00008gDOI Listing
June 2013

Zinc isotopic evidence for the origin of the Moon.

Nature 2012 Oct;490(7420):376-9

Department of Earth and Planetary Sciences and McDonnell Center for Space Sciences, Washington University, St Louis, Missouri 63130, USA.

Volatile elements have a fundamental role in the evolution of planets. But how budgets of volatiles were set in planets, and the nature and extent of volatile-depletion of planetary bodies during the earliest stages of Solar System formation remain poorly understood. The Moon is considered to be volatile-depleted and so it has been predicted that volatile loss should have fractionated stable isotopes of moderately volatile elements. One such element, zinc, exhibits strong isotopic fractionation during volatilization in planetary rocks, but is hardly fractionated during terrestrial igneous processes, making it a powerful tracer of the volatile histories of planets. Here we present high-precision zinc isotopic and abundance data which show that lunar magmatic rocks are enriched in the heavy isotopes of zinc and have lower zinc concentrations than terrestrial or Martian igneous rocks. Conversely, Earth and Mars have broadly chondritic zinc isotopic compositions. We show that these variations represent large-scale evaporation of zinc, most probably in the aftermath of the Moon-forming event, rather than small-scale evaporation processes during volcanism. Our results therefore represent evidence for volatile depletion of the Moon through evaporation, and are consistent with a giant impact origin for the Earth and Moon.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature11507DOI Listing
October 2012