Publications by authors named "Fokhrul Hossain"

17 Publications

  • Page 1 of 1

Precision Medicine and Triple-Negative Breast Cancer: Current Landscape and Future Directions.

Cancers (Basel) 2021 Jul 26;13(15). Epub 2021 Jul 26.

Department of Genetics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA.

Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous subtype of breast cancer associated with a high recurrence and metastasis rate that affects African-American women disproportionately. The recent approval of targeted therapies for small subgroups of TNBC patients by the US 'Food and Drug Administration' is a promising development. The advancement of next-generation sequencing, particularly somatic exome panels, has raised hopes for more individualized treatment plans. However, the use of precision medicine for TNBC is a work in progress. This review will discuss the potential benefits and challenges of precision medicine for TNBC. A recent clinical trial designed to target TNBC patients based on their subtype-specific classification shows promise. Yet, tumor heterogeneity and sub-clonal evolution in primary and metastatic TNBC remain a challenge for oncologists to design adaptive precision medicine-based treatment plans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers13153739DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8345034PMC
July 2021

Racial Disparities in Triple Negative Breast Cancer: A Review of the Role of Biologic and Non-biologic Factors.

Front Public Health 2020 22;8:576964. Epub 2020 Dec 22.

Louisiana Health Sciences Center, School of Medicine, New Orleans, LA, United States.

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor (HER2). TNBC constitutes about 15-30 percent of all diagnosed invasive breast cancer cases in the United States. African-American (AA) women have high prevalence of TNBC with worse clinical outcomes than European-American (EA) women. The contributing factors underlying racial disparities have been divided into two major categories based on whether they are related to lifestyle (non-biologic) or unrelated to lifestyle (biologic). Our objective in the present review article was to understand the potential interactions by which these risk factors intersect to drive the initiation and development of the disparities resulting in the aggressive TNBC subtypes in AA women more likely than in EA women. To reach our goal, we conducted literature searches using MEDLINE/PubMed to identify relevant articles published from 2005 to 2019 addressing breast cancer disparities primarily among AA and EA women in the United States. We found that disparities in TNBC may be attributed to racial differences in biological factors, such as tumor heterogeneity, population genetics, somatic genomic mutations, and increased expression of genes in AA breast tumors which have direct link to breast cancer. In addition, a large number of non-biologic factors, including socioeconomic deprivation adversities associated with poverty, social stress, unsafe neighborhoods, lack of healthcare access and pattern of reproductive factors, can promote comorbid diseases such as obesity and diabetes which may adversely contribute to the aggression of TNBC biology in AA women. Further, the biological risk factors directly linked to TNBC in AA women may potentially interact with non-biologic factors to promote a higher prevalence of TNBC, more aggressive biology, and poor survival. The relative contributions of the biologic and non-biologic factors and their potential interactions is essential to our understanding of disproportionately high burden and poor survival rates of AA women with TNBC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fpubh.2020.576964DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7783321PMC
May 2021

ERK5 Is Required for Tumor Growth and Maintenance Through Regulation of the Extracellular Matrix in Triple Negative Breast Cancer.

Front Oncol 2020 3;10:1164. Epub 2020 Aug 3.

Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States.

Conventional mitogen-activated protein kinase (MAPK) family members regulate diverse cellular processes involved in tumor initiation and progression, yet the role of ERK5 in cancer biology is not fully understood. Triple-negative breast cancer (TNBC) presents a clinical challenge due to the aggressive nature of the disease and a lack of targeted therapies. ERK5 signaling contributes to drug resistance and metastatic progression through distinct mechanisms, including activation of epithelial-to-mesenchymal transition (EMT). More recently a role for ERK5 in regulation of the extracellular matrix (ECM) has been proposed, and here we investigated the necessity of ERK5 in TNBC tumor formation. Depletion of ERK5 expression using the CRISPR/Cas9 system in MDA-MB-231 and Hs-578T cells resulted in loss of mesenchymal features, as observed through gene expression profile and cell morphology, and suppressed TNBC cell migration. xenograft experiments revealed ERK5 knockout disrupted tumor growth kinetics, which was restored using high concentration Matrigel™ and ERK5-ko reduced expression of the angiogenesis marker CD31. These findings implicated a role for ERK5 in the extracellular matrix (ECM) and matrix integrity. RNA-sequencing analyses demonstrated downregulation of matrix-associated genes, integrins, and pro-angiogenic factors in ERK5-ko cells. Tissue decellularization combined with cryo-SEM and interrogation of biomechanical properties revealed that ERK5-ko resulted in loss of key ECM fiber alignment and mechanosensing capabilities in breast cancer xenografts compared to parental wild-type cells. In this study, we identified a novel role for ERK5 in tumor growth kinetics through modulation of the ECM and angiogenesis axis in breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fonc.2020.01164DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416559PMC
August 2020

Obesity-Altered Adipose Stem Cells Promote Radiation Resistance of Estrogen Receptor Positive Breast Cancer through Paracrine Signaling.

Int J Mol Sci 2020 Apr 15;21(8). Epub 2020 Apr 15.

Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA.

Obesity is associated with poorer responses to chemo- and radiation therapy for breast cancer, which leads to higher mortality rates for obese women who develop breast cancer. Adipose stem cells (ASCs) are an integral stromal component of the tumor microenvironment (TME). In this study, the effects of obesity-altered ASCs (obASCs) on estrogen receptor positive breast cancer cell's (ERBCCs) response to radiotherapy (RT) were evaluated. We determined that BCCs had a decreased apoptotic index and increased surviving fraction following RT when co-cultured with obASCs compared to lnASCs or non-co-cultured cells. Further, obASCs reduced oxidative stress and induced IL-6 expression in co-cultured BCCs after radiation. obASCs produce increased levels of leptin relative to ASCs from normal-weight individuals (lnASCs). obASCs upregulate the expression of IL-6 compared to non-co-cultured BCCs, but BCCs co-cultured with leptin knockdown obASCs did not upregulate IL-6. The impact of shLeptin obASCs on radiation resistance of ERBCCs demonstrate a decreased radioprotective ability compared to shControl obASCs. Key NOTCH signaling players were enhanced in ERBBCs following co-culture with shCtrl obASCs but not shLep obASCs. This work demonstrates that obesity-altered ASCs, via enhanced secretion of leptin, promote IL-6 and NOTCH signaling pathways in ERBCCs leading to radiation resistance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms21082722DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7216284PMC
April 2020

Gene shaving using a sensitivity analysis of kernel based machine learning approach, with applications to cancer data.

PLoS One 2019 23;14(5):e0217027. Epub 2019 May 23.

Tulane Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA 70112, United States of America.

Background: Gene shaving (GS) is an essential and challenging tools for biomedical researchers due to the large number of genes in human genome and the complex nature of biological networks. Most GS methods are not applicable to non-linear and multi-view data sets. While the kernel based methods can overcome these problems, a well-founded positive definite kernel based GS method has yet to be proposed for biomedical data analysis.

Methods And Findings: Since the kernel based methods on genomic information can improve the prediction of diseases, here we proposed a noble method, "kernel based gene shaving" which is based on the influence function of kernel canonical correlation analysis. To investigate the performance of the proposed method in comparison to state-of-the-art-method in gene saving, we analyzed extensive simulated and real microarray gene expression data set. The performance metrics including true positive rate, true negative rate, false positive rate, false negative rate, misclassification error rate, the false discovery rate and area under curves were computed for each methods. In colon cancer data analysis, the proposed method identified a significant subsets of 210 genes out of 2000 genes and suggestive superior performance compared with other methods. The proposed method can be applied to the study of other disease process where two view data is a common task.

Conclusions: We addressed the challenge of finding unique kernel based GS methods by using the influence function of kernel canonical correlation analysis. The proposed method has shown to have better performance than state-of-the-art-methods in gene saving and has identified many more significant gene interactions, suggesting that genes function in a concerted effort in colon cancer. In similar biomedical data analysis, kernel based methods could be applied to select a potential subset of genes. The positive definite kernel based methods can overcome the non-linearity problem and improve the prediction process.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217027PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6532884PMC
February 2020

Leptin produced by obesity-altered adipose stem cells promotes metastasis but not tumorigenesis of triple-negative breast cancer in orthotopic xenograft and patient-derived xenograft models.

Breast Cancer Res 2019 05 22;21(1):67. Epub 2019 May 22.

Center for Stem Cell Research and Regenerative Medicine, Tulane University, 1430 Tulane Ave, #8699, New Orleans, LA, 70112, USA.

Background: Breast cancer is the second leading cause of cancer deaths in the USA. Triple-negative breast cancer (TNBC) is a clinically aggressive subtype of breast cancer with high rates of metastasis, tumor recurrence, and resistance to therapeutics. Obesity, defined by a high body mass index (BMI), is an established risk factor for breast cancer. Women with a high BMI have increased incidence and mortality of breast cancer; however, the mechanisms(s) by which obesity promotes tumor progression are not well understood.

Methods: In this study, obesity-altered adipose stem cells (obASCs) were used to evaluate obesity-mediated effects of TNBC. Both in vitro and in vivo analyses of TNBC cell lines were co-cultured with six pooled donors of obASCs (BMI > 30) or ASCs isolated from lean women (lnASCs) (BMI < 25).

Results: We found that obASCs promote a pro-metastatic phenotype by upregulating genes associated with epithelial-to-mesenchymal transition and promoting migration in vitro. We confirmed our findings using a TNBC patient-derived xenograft (PDX) model. PDX tumors grown in the presence of obASCS in SCID/beige mice had increased circulating HLA1 human cells as well as increased numbers of CD44CD24 cancer stem cells in the peripheral blood. Exposure of the TNBC PDX to obASCs also increased the formation of metastases. The knockdown of leptin expression in obASCs suppressed the pro-metastatic effects of obASCs.

Conclusions: Leptin signaling is a potential mechanism through which obASCs promote metastasis of TNBC in both in vitro and in vivo analyses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13058-019-1153-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6530039PMC
May 2019

Neighborhood Social Determinants of Triple Negative Breast Cancer.

Front Public Health 2019 18;7:18. Epub 2019 Feb 18.

School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, United States.

Triple Negative Breast Cancer (TNBC) is an aggressive, heterogeneous subtype of breast cancer, which is more frequently diagnosed in African American (AA) women than in European American (EA) women. The purpose of this study is to investigate the role of social determinants in racial disparities in TNBC. Data on Louisiana TNBC patients diagnosed in 2010-2012 were collected and geocoded to census tract of residence at diagnosis by the Louisiana Tumor Registry. Using multilevel statistical models, we analyzed the role of neighborhood concentrated disadvantage index (CDI), a robust measure of physical and social environment, in racial disparities in TNBC incidence, stage at diagnosis, and stage-specific survival for the study population. Controlling for age, we found that AA women had a 2.21 times the incidence of TNBC incidence compared to EA women. Interestingly, the incidence of TNBC was independent of neighborhood CDI and adjusting for neighborhood environment did not impact the observed racial disparity. AA women were more likely to be diagnosed at later stages and CDI was associated with more advanced stages of TNBC at diagnosis. CDI was also significantly associated with poorer stage-specific survival. Overall, our results suggest that neighborhood disadvantage contributes to racial disparities in stage at diagnosis and survival among TNBC patients, but not to disparities in incidence of the disease. Further research is needed to determine the mechanisms through which social determinants affect the promotion and progression of this disease and guide efforts to improve overall survival.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fpubh.2019.00018DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387917PMC
February 2019

Adenosine A2A Receptor Stimulation Inhibits TCR-Induced Notch1 Activation in CD8+T-Cells.

Front Immunol 2019 7;10:162. Epub 2019 Feb 7.

Department of Pharmacy, University of Salerno, Fisciano, Italy.

Notch receptors signaling is required for optimal T-cell activation and function. T-cell receptor (TCR) engagement can activate Notch receptors in T-cells in a ligand-independent fashion. In this study, we examined the role of adenosine A2A receptor (A2AR) signaling pathway in regulating the activity of Notch1 induced by TCR stimulation in CD8+T-cells. A selective A2AR agonist decreased Notch1 protein expression and Notch1 cleavage, and reduced transcripts of Notch1-target genes and in activated CD8+T-cells. Inhibition of TCR-induced Notch1 expression by an A2AR agonist was accompanied by increased cAMP concentration and mimicked by forskolin. This effect was associated with reduced IFN-γ and granzyme B production. The effect of an A2AR agonist was abrogated by a selective A2AR antagonist and absent in CD8+T-cells harvested from -/- mice. Stimulation of A2AR reduced Notch1 receptor levels by inhibiting upstream TCR signals, including ZAP70 phosphorylation, in turn impairing the generation of the active Notch1 intracellular domain (N1ICD). Direct activation of PKC with PMA and ionomycin bypassed A2AR-induced Notch1 inhibition. Overexpression of N1ICD in CD8+T-cells prevented the suppressive effects of an A2AR agonist on proliferation and cytokine release during activation. Our results identify the A2AR signaling pathway as an important regulator of TCR-induced Notch1 receptor activation in CD8+T-cells, and Notch as an important target of the immune suppressive effects of A2AR. We propose a mechanism whereby A2AR impairs CD8 T-cells function through inhibition of Notch1 receptor activation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2019.00162DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374329PMC
January 2020

Notch Signaling Regulates Mitochondrial Metabolism and NF-κB Activity in Triple-Negative Breast Cancer Cells via IKKα-Dependent Non-canonical Pathways.

Front Oncol 2018 4;8:575. Epub 2018 Dec 4.

Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States.

Triple negative breast cancer (TNBC) patients have high risk of recurrence and metastasis, and current treatment options remain limited. Cancer stem-like cells (CSCs) have been linked to cancer initiation, progression and chemotherapy resistance. Notch signaling is a key pathway regulating TNBC CSC survival. Treatment of TNBC with PI3K or mTORC1/2 inhibitors results in drug-resistant, Notch-dependent CSC. However, downstream mechanisms and potentially druggable Notch effectors in TNBC CSCs are largely unknown. We studied the role of the AKT pathway and mitochondrial metabolism downstream of Notch signaling in TNBC CSC from cell lines representative of different TNBC molecular subtypes as well as a novel patient-derived model. We demonstrate that exposure of TNBC cells to recombinant Notch ligand Jagged1 leads to rapid AKT phosphorylation in a Notch1-dependent but RBP-Jκ independent fashion. This requires mTOR and IKKα. Jagged1 also stimulates mitochondrial respiration and fermentation in an AKT- and IKK-dependent fashion. Notch1 co-localizes with mitochondria in TNBC cells. Pharmacological inhibition of Notch cleavage by gamma secretase inhibitor PF-03084014 in combination with AKT inhibitor MK-2206 or IKK-targeted NF-κB inhibitor Bay11-7082 blocks secondary mammosphere formation from sorted CD90 or CD44CD24 (CSCs) cells. A TNBC patient-derived model gave comparable results. Besides mitochondrial oxidative metabolism, Jagged1 also triggers nuclear, NF-κB-dependent transcription of anti-apoptotic gene cIAP-2. This requires recruitment of Notch1, IKKα and NF-κB to the cIAP-2 promoter. Our observations support a model where Jagged1 triggers IKKα-dependent, mitochondrial and nuclear Notch1 signals that stimulate AKT phosphorylation, oxidative metabolism and transcription of survival genes in PTEN wild-type TNBC cells. These data suggest that combination treatments targeting the intersection of the Notch, AKT and NF-κB pathways have potential therapeutic applications against CSCs in TNBC cases with Notch1 and wild-type PTEN expression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fonc.2018.00575DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289043PMC
December 2018

Notch Signaling in Myeloid Cells as a Regulator of Tumor Immune Responses.

Front Immunol 2018 4;9:1288. Epub 2018 Jun 4.

Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States.

Cancer immunotherapy, which stimulates or augments host immune responses to treat malignancies, is the latest development in the rapidly advancing field of cancer immunology. The basic principles of immunotherapies are either to enhance the functions of specific components of the immune system or to neutralize immune-suppressive signals produced by cancer cells or tumor microenvironment cells. When successful, these approaches translate into long-term survival for patients. However, durable responses are only seen in a subset of patients and so far, only in some cancer types. As for other cancer treatments, resistance to immunotherapy can also develop. Numerous research groups are trying to understand why immunotherapy is effective in some patients but not others and to develop strategies to enhance the effectiveness of immunotherapy. The Notch signaling pathway is involved in many aspects of tumor biology, from angiogenesis to cancer stem cell maintenance to tumor immunity. The role of Notch in the development and modulation of the immune response is complex, involving an intricate crosstalk between antigen-presenting cells, T-cell subpopulations, cancer cells, and other components of the tumor microenvironment. Elegant studies have shown that Notch is a central mediator of tumor-induced T-cell anergy and that activation of Notch1 in CD8 T-cells enhances cancer immunotherapy. Tumor-infiltrating myeloid cells, including myeloid-derived suppressor cells, altered dendritic cells, and tumor-associated macrophages along with regulatory T cells, are major obstacles to the development of successful cancer immunotherapies. In this article, we focus on the roles of Notch signaling in modulating tumor-infiltrating myeloid cells and discuss implications for therapeutic strategies that modulate Notch signaling to enhance cancer immunotherapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2018.01288DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5994797PMC
August 2019

A novel patient-derived xenograft model for claudin-low triple-negative breast cancer.

Breast Cancer Res Treat 2018 Jun 1;169(2):381-390. Epub 2018 Feb 1.

Department of Medicine, Section of Hematology & Medical Oncology, Tulane University School of Medicine, New Orleans, LA, USA.

Background: Triple-negative breast cancer (TNBC) subtypes are clinically aggressive and cannot be treated with targeted therapeutics commonly used in other breast cancer subtypes. The claudin-low (CL) molecular subtype of TNBC has high rates of metastases, chemoresistance and recurrence. There exists an urgent need to identify novel therapeutic targets in TNBC; however, existing models utilized in target discovery research are limited. Patient-derived xenograft (PDX) models have emerged as superior models for target discovery experiments because they recapitulate features of patient tumors that are limited by cell-line derived xenograft methods.

Methods: We utilize immunohistochemistry, qRT-PCR and Western Blot to visualize tumor architecture, cellular composition, genomic and protein expressions of a new CL-TNBC PDX model (TU-BcX-2O0). We utilize tissue decellularization techniques to examine extracellular matrix composition of TU-BcX-2O0.

Results: Our laboratory successfully established a TNBC PDX tumor, TU-BCX-2O0, which represents a CL-TNBC subtype and maintains this phenotype throughout subsequent passaging. We dissected TU-BCx-2O0 to examine aspects of this complex tumor that can be targeted by developing therapeutics, including the whole and intact breast tumor, specific cell populations within the tumor, and the extracellular matrix.

Conclusions: Here, we characterize a claudin-low TNBC patient-derived xenograft model that can be utilized for therapeutic research studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10549-018-4685-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948145PMC
June 2018

Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells.

Oncoimmunology 2017;6(10):e1344804. Epub 2017 Jun 30.

Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.

Myeloid-derived suppressor cells (MDSC) promote tumor growth by blocking anti-tumor T cell responses. Recent reports show that MDSC increase fatty acid uptake and fatty acid oxidation (FAO) to support their immunosuppressive functions. Inhibition of FAO promoted a therapeutic T cell-mediated anti-tumor effect. Here, we sought to determine the mechanisms by which tumor-infiltrating MDSC increase the uptake of exogenous lipids and undergo metabolic and functional reprogramming to become highly immunosuppressive cells. The results showed that tumor-derived cytokines (G-CSF and GM-CSF) and the subsequent signaling through STAT3 and STAT5 induce the expression of lipid transport receptors with the resulting increase in the uptake of lipids present at high concentrations in the tumor microenvironment. The intracellular accumulation of lipids increases the oxidative metabolism and activates the immunosuppressive mechanisms. Inhibition of STAT3 or STAT5 signaling or genetic depletion of the fatty acid translocase CD36 inhibits the activation of oxidative metabolism and the induction of immunosuppressive function in tumor-infiltrating MDSC and results in a CD8 T cell-dependent delay in tumor growth. Of note, human tumor-infiltrating and peripheral blood MDSC also upregulate the expression of lipid transport proteins, and lipids promote the generation of highly suppressive human MDSC in vitro. Our data therefore provide a mechanism by which tumor-derived factors and the high lipid content in the tumor microenvironment can cause the profound metabolic and functional changes found in MDSC and suggest novel approaches to prevent or reverse these processes. These results could further enhance the efficacy of cancer immunotherapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/2162402X.2017.1344804DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5665069PMC
June 2017

γ-Secretase inhibitors in cancer clinical trials are pharmacologically and functionally distinct.

EMBO Mol Med 2017 07;9(7):950-966

Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA

γ-Secretase inhibitors (GSIs) are being actively repurposed as cancer therapeutics based on the premise that inhibition of NOTCH1 signaling in select cancers is therapeutic. Using novel assays to probe effects of GSIs against a broader panel of substrates, we demonstrate that clinical GSIs are pharmacologically distinct. GSIs show differential profiles of inhibition of the various NOTCH substrates, with some enhancing cleavage of other NOTCH substrates at concentrations where NOTCH1 cleavage is inhibited. Several GSIs are also potent inhibitors of select signal peptide peptidase (SPP/SPPL) family members. Extending these findings to mammosphere inhibition assays in triple-negative breast cancer lines, we establish that these GSIs have different functional effects. We also demonstrate that the processive γ-secretase cleavage pattern established for amyloid precursor protein (APP) occurs in multiple substrates and that potentiation of γ-secretase cleavage is attributable to a direct action of low concentrations of GSIs on γ-secretase. Such data definitively demonstrate that the clinical GSIs are not biological equivalents, and provide an important framework to evaluate results from ongoing and completed human trials with these compounds.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.15252/emmm.201607265DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5494507PMC
July 2017

Inhibition of Fatty Acid Oxidation Modulates Immunosuppressive Functions of Myeloid-Derived Suppressor Cells and Enhances Cancer Therapies.

Cancer Immunol Res 2015 Nov 29;3(11):1236-47. Epub 2015 May 29.

Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana. Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, Louisiana.

Myeloid-derived suppressor cells (MDSC) promote tumor growth by inhibiting T-cell immunity and promoting malignant cell proliferation and migration. The therapeutic potential of blocking MDSC in tumors has been limited by their heterogeneity, plasticity, and resistance to various chemotherapy agents. Recent studies have highlighted the role of energy metabolic pathways in the differentiation and function of immune cells; however, the metabolic characteristics regulating MDSC remain unclear. We aimed to determine the energy metabolic pathway(s) used by MDSC, establish its impact on their immunosuppressive function, and test whether its inhibition blocks MDSC and enhances antitumor therapies. Using several murine tumor models, we found that tumor-infiltrating MDSC (T-MDSC) increased fatty acid uptake and activated fatty acid oxidation (FAO). This was accompanied by an increased mitochondrial mass, upregulation of key FAO enzymes, and increased oxygen consumption rate. Pharmacologic inhibition of FAO blocked immune inhibitory pathways and functions in T-MDSC and decreased their production of inhibitory cytokines. FAO inhibition alone significantly delayed tumor growth in a T-cell-dependent manner and enhanced the antitumor effect of adoptive T-cell therapy. Furthermore, FAO inhibition combined with low-dose chemotherapy completely inhibited T-MDSC immunosuppressive effects and induced a significant antitumor effect. Interestingly, a similar increase in fatty acid uptake and expression of FAO-related enzymes was found in human MDSC in peripheral blood and tumors. These results support the possibility of testing FAO inhibition as a novel approach to block MDSC and enhance various cancer therapies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/2326-6066.CIR-15-0036DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4636942PMC
November 2015

Cigarette Smoke Alters the Hematopoietic Stem Cell Niche.

Med Sci (Basel) 2014 Mar 18;2(1):37-50. Epub 2014 Feb 18.

Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.

Effects of tobacco smoke on hematologic derangements have received little attention. This study employed a mouse model of cigarette smoke exposure to explore the effects on bone marrow niche function. While lung cancer is the most widely studied consequence of tobacco smoke exposure, other malignancies, including leukemia, are associated with tobacco smoke exposure. Animals received cigarette smoke exposure for 6 h/day, 5 days/week for 9 months. Results reveal that the hematopoietic stem and progenitor cell (HSPC) pool size is reduced by cigarette smoke exposure. We next examined the effect of cigarette smoke exposure on one supporting cell type of the niche, the mesenchymal stromal cells (MSCs). Smoke exposure decreased the number of MSCs. Transplantation of naïve HSPCs into irradiated mice with cigarette smoke exposure yielded fewer numbers of engrafted HSPCs. This result suggests that smoke-exposed mice possess dysfunctional niches, resulting in abnormal hematopoiesis. Co-culture experiments using MSCs isolated from control or cigarette smoke-exposed mice with naïve HSPCs showed that MSCs from cigarette smoke-exposed mice generated marked expansion of naïve HSPCs. These data show that cigarette smoke exposure decreases MSC and HSC number and also increases pro-proliferative gene expression by cigarette smoke-exposed MSCs, which may stimulate HSPC expansion. These results of this investigation are clinically relevant to both bone marrow donors with a history of smoking and bone marrow transplant (BMT) recipients with a history of smoking.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/medsci2010037DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576506PMC
March 2014

Human multipotent stromal cells attenuate lipopolysaccharide-induced acute lung injury in mice via secretion of tumor necrosis factor-α-induced protein 6.

Stem Cell Res Ther 2011 May 13;2(3):27. Epub 2011 May 13.

Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.

Introduction: Multipotent stromal cells (MSCs) are currently in clinical trials for a number of inflammatory diseases. Recent studies have demonstrated the ability of MSCs to attenuate inflammation in rodent models of acute lung injury (ALI) suggesting that MSCs may also be beneficial in treating ALI.

Methods: To better understand how human MSCs (hMSCs) may act in ALI, the lungs of immunocompetent mice were exposed to lipopolysaccharide (LPS) and four hours later bone marrow derived hMSCs were delivered by oropharyngeal aspiration (OA). The effect of hMSCs on lung injury was assessed by measuring the lung wet/dry weight ratio and total protein in bronchoalveolar lavage (BAL) fluid 24 or 48 h after LPS. BAL fluid was also analyzed for the presence of inflammatory cells and cytokine expression by multiplex immunoassay. Microarray analysis of total RNA isolated from treated and untreated lungs was performed to elucidate the mechanism(s) involved in hMSC modulation of lung inflammation.

Results: Administration of hMSCs significantly reduced the expression of pro-inflammatory cytokines, neutrophil counts and total protein in bronchoalveolar lavage. There was a concomitant reduction in pulmonary edema. The anti-inflammatory effects of hMSCs were not dependent on localization to the lung, as intraperitoneal administration of hMSCs also attenuated LPS-induced inflammation in the lung. Microarray analysis revealed significant induction of tumor necrosis factor (TNF)-α-induced protein 6 (TNFAIP6/TSG-6) expression by hMSCs 12 h after OA delivery to LPS-exposed lungs. Knockdown of TSG-6 expression in hMSCs by RNA interference abrogated most of their anti-inflammatory effects. In addition, intra-pulmonary delivery of recombinant human TSG-6 reduced LPS-induced inflammation in the lung.

Conclusions: These results show that hMSCs recapitulate the observed beneficial effects of rodent MSCs in animal models of ALI and suggest that the anti-inflammatory properties of hMSCs in the lung are explained, at least in part, by activation of hMSCs to secrete TSG-6.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/scrt68DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218818PMC
May 2011
-->