Publications by authors named "Flavia Ribezzo"

2 Publications

  • Page 1 of 1

Rps14, Csnk1a1 and miRNA145/miRNA146a deficiency cooperate in the clinical phenotype and activation of the innate immune system in the 5q- syndrome.

Leukemia 2019 07 16;33(7):1759-1772. Epub 2019 Jan 16.

Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany.

RPS14, CSNK1A1, and miR-145 are universally co-deleted in the 5q- syndrome, but mouse models of each gene deficiency recapitulate only a subset of the composite clinical features. We analyzed the combinatorial effect of haploinsufficiency for Rps14, Csnk1a1, and miRNA-145, using mice with genetically engineered, conditional heterozygous inactivation of Rps14 and Csnk1a1 and stable knockdown of miR-145/miR-146a. Combined Rps14/Csnk1a1/miR-145/146a deficiency recapitulated the cardinal features of the 5q- syndrome, including (1) more severe anemia with faster kinetics than Rps14 haploinsufficiency alone and (2) pathognomonic megakaryocyte morphology. Macrophages, regulatory cells of erythropoiesis and the innate immune response, were significantly increased in Rps14/Csnk1a1/miR-145/146a deficient mice as well as in 5q- syndrome patient bone marrows and showed activation of the innate immune response, reflected by increased expression of S100A8, and decreased phagocytic function. We demonstrate that Rps14/Csnk1a1/miR-145 and miR-146a deficient macrophages alter the microenvironment and induce S100A8 expression in the mesenchymal stem cell niche. The increased S100A8 expression in the mesenchymal niche was confirmed in 5q- syndrome patients. These data indicate that intrinsic defects of the 5q- syndrome hematopoietic stem cell directly alter the surrounding microenvironment, which in turn affects hematopoiesis as an extrinsic mechanism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41375-018-0350-3DOI Listing
July 2019

Systemic DNA damage responses in aging and diseases.

Semin Cancer Biol 2016 06 7;37-38:26-35. Epub 2016 Jan 7.

Institute for Genome Stability in Ageing and Disease, Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD) Research Center, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany. Electronic address:

The genome is constantly attacked by a variety of genotoxic insults. The causal role for DNA damage in aging and cancer is exemplified by genetic defects in DNA repair that underlie a broad spectrum of acute and chronic human disorders that are characterized by developmental abnormalities, premature aging, and cancer predisposition. The disease symptoms are typically tissue-specific with uncertain genotype-phenotype correlation. The cellular DNA damage response (DDR) has been extensively investigated ever since yeast geneticists discovered DNA damage checkpoint mechanisms, several decades ago. In recent years, it has become apparent that not only cell-autonomous but also systemic DNA damage responses determine the outcome of genome instability in organisms. Understanding the mechanisms of non-cell-autonomous DNA damage responses will provide important new insights into the role of genome instability in human aging and a host of diseases including cancer and might better explain the complex phenotypes caused by genome instability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcancer.2015.12.005DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886830PMC
June 2016