Publications by authors named "Flávia Karina Delella"

20 Publications

  • Page 1 of 1

Exposure to Bacteriophages T4 and M13 Increases Integrin Gene Expression and Impairs Migration of Human PC-3 Prostate Cancer Cells.

Antibiotics (Basel) 2021 Oct 3;10(10). Epub 2021 Oct 3.

Laboratory of Extracellular Matrix Biology, Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil.

The interaction between bacteriophages and integrins has been reported in different cancer cell lines, and efforts have been undertaken to understand these interactions in tumor cells along with their possible role in gene alterations, with the aim to develop new cancer therapies. Here, we report that the non-specific interaction of T4 and M13 bacteriophages with human PC-3 cells results in differential migration and varied expression of different integrins. PC-3 tumor cells (at 70% confluence) were exposed to 1 × 10 pfu/mL of either lytic T4 bacteriophage or filamentous M13 bacteriophage. After 24 h of exposure, cells were processed for a histochemical analysis, wound-healing migration assay, and gene expression profile using quantitative real-time PCR (qPCR). qPCR was performed to analyze the expression profiles of integrins , , , , and . Our findings revealed that PC-3 cells interacted with T4 and M13 bacteriophages, with significant upregulation of , , , genes after phage exposure. PC-3 cells also exhibited reduced migration activity when exposed to either T4 or M13 phages. These results suggest that wildtype bacteriophages interact non-specifically with PC-3 cells, thereby modulating the expression of integrin genes and affecting cell migration. Therefore, bacteriophages have future potential applications in anticancer therapies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/antibiotics10101202DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8532711PMC
October 2021

Magnetic 3D cell culture: State of the art and current advances.

Life Sci 2021 Dec 7;286:120028. Epub 2021 Oct 7.

São Paulo State University (UNESP), Institute of Biosciences, Department of Structural and Functional Biology, Botucatu, São Paulo, Brazil. Electronic address:

Cell culture is an important tool for the understanding of cell biology and behavior. In vitro cultivation has been increasingly indispensable for biomedical, pharmaceutical, and biotechnology research. Nevertheless, with the demand for in vitro experimentation strategies more representative of in vivo conditions, tridimensional (3D) cell culture models have been successfully developed. Although these 3D models are efficient and address critical questions from different research areas, there are considerable differences between the existing techniques regarding both elaboration and cost. In light of this, this review describes the construction of 3D spheroids using magnetization while bringing the most recent updates in this field. Magnetic 3D cell culture consists of magnetizing cells using an assembly of gold and iron oxide nanoparticles cross-linked with poly-l-lysine nanoparticles. Then, 3D culture formation in special plates with the assistance of magnets for levitation or bioprinting. Here, we discuss magnetic 3D cell culture advancements, including tumor microenvironment, tissue reconstruction, blood vessel engineering, toxicology, cytotoxicity, and 3D culture of cardiomyocytes, bronchial and pancreatic cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2021.120028DOI Listing
December 2021

Bacteriophages M13 and T4 Increase the Expression of Anchorage-Dependent Survival Pathway Genes and Down Regulate Androgen Receptor Expression in LNCaP Prostate Cell Line.

Viruses 2021 Sep 2;13(9). Epub 2021 Sep 2.

Laboratory of Extracellular Matrix Biology, Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil.

Wild-type or engineered bacteriophages have been reported as therapeutic agents in the treatment of several types of diseases, including cancer. They might be used either as naked phages or as carriers of antitumor molecules. Here, we evaluate the role of bacteriophages M13 and T4 in modulating the expression of genes related to cell adhesion, growth, and survival in the androgen-responsive LNCaP prostatic adenocarcinoma-derived epithelial cell line. LNCaP cells were exposed to either bacteriophage M13 or T4 at a concentration of 1 × 10 pfu/mL, 1 × 10 pfu/mL, and 1 × 10 pfu/mL for 24, 48, and 72 h. After exposure, cells were processed for general morphology, cell viability assay, and gene expression analyses. Neither M13 nor T4 exposure altered cellular morphology, but both decreased the MTT reduction capacity of LNCaP cells at different times of treatment. In addition, genes , , , , , , and were significantly up-regulated, whilst the genes , , , and were down-regulated. Our results show that bacteriophage M13 and T4 interact with LNCaP cells and effectively promote gene expression changes related to anchorage-dependent survival and androgen signaling. In conclusion, phage therapy may increase the response of PCa treatment with pathway inhibitors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/v13091754DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473360PMC
September 2021

MicroRNA roles in regeneration: Multiple lessons from zebrafish.

Dev Dyn 2021 Sep 21. Epub 2021 Sep 21.

Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil.

MicroRNAs (miRNAs) are small noncoding RNAs with pivotal roles in the control of gene expression. By comparing the miRNA profiles of uninjured vs. regenerating tissues and structures, several studies have found that miRNAs are potentially involved in the regenerative process. By inducing miRNA overexpression or inhibition, elegant experiments have directed regenerative responses validating relevant miRNA-to-target interactions. The zebrafish (Danio rerio) has been the epicenter of regenerative research because of its exceptional capability to self-repair damaged tissues and body structures. In this review, we discuss recent discoveries that have improved our understanding of the impact of gene regulation mediated by miRNAs in the context of the regeneration of fins, heart, retina, and nervous tissue in zebrafish. We compiled what is known about the miRNA control of regeneration in these tissues and investigated the links among up-regulated and down-regulated miRNAs, their putative or validated targets, and the regenerative process. Finally, we briefly discuss the forthcoming prospects, highlighting directions and the potential for further development of this field.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvdy.421DOI Listing
September 2021

P-MAPA and Interleukin-12 Reduce Cell Migration/Invasion and Attenuate the Toll-Like Receptor-Mediated Inflammatory Response in Ovarian Cancer SKOV-3 Cells: A Preliminary Study.

Molecules 2019 Dec 18;25(1). Epub 2019 Dec 18.

Department of Anatomy, UNESP-São Paulo State University, Institute of Biosciences, Botucatu, 18618-689 São Paulo, Brazil.

Immunotherapies have emerged as promising complementary treatments for ovarian cancer (OC), but its effective and direct role on OC cells is unclear. This study examined the combinatory effects of the protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride, known as P-MAPA, and the human recombinant interleukin-12 (hrIL-12) on cell migration/invasion, apoptosis, toll-like receptor (TLR)-mediated inflammation, and cytokine/chemokine profile in human OC cell line SKOV-3. P-MAPA and IL-12 showed cancer cell toxicity under low doses after 48 h. Although apoptosis/necrosis and the cell cycle were unchanged by the treatments, P-MAPA enhanced the sensitivity to paclitaxel (PTX) and P-MAPA associated with IL-12 significantly reduced the migratory potential and invasion capacity of SKOV-3 cells. P-MAPA therapy reduced TLR2 immunostaining and the myeloid differentiation factor 88 (MyD88), but not the TLR4 levels. Moreover, the combination of P-MAPA with IL-12 attenuated the levels of MyD88, interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-kB p65). The IL-12 levels were increased and P-MAPA stimulated the secretion of cytokines IL-3, IL-9, IL-10, and chemokines MDC/CCL22 and, regulated on activation, normal T cells expressed and secreted (RANTES)/CCL5. Conversely, combination therapy reduced the levels of IL-3, IL-9, IL-10, MDC/CCL22, and RANTES/CCL5. Collectively, P-MAPA and IL-12 reduce cell dynamics and effectively target the TLR-related downstream molecules, eliciting a protective effect against chemoresistance. P-MAPA also stimulates the secretion of anti-inflammatory molecules, possibly having an immune response in the OC microenvironment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules25010005DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982916PMC
December 2019

Mimicking the tumor microenvironment: Fibroblasts reduce miR-29b expression and increase the motility of ovarian cancer cells in a co-culture model.

Biochem Biophys Res Commun 2019 08 11;516(1):96-101. Epub 2019 Jun 11.

Sao Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu, Sao Paulo, Brazil. Electronic address:

Ovarian cancer (OC) is a highly prevalent gynecological malignancy worldwide. Throughout ovarian carcinogenesis, the crosstalk between cellular components of the microenvironment, including tumor cells and fibroblasts, is proposed to play critical roles in cancer progression. The dysregulation of microRNA expression is also a pronounced feature of the OC. The screening of microRNAs, mainly those involved in OC microenvironment, could have diagnostic and/or therapeutic potential for this malignancy. Thus, we assessed the influence of fibroblasts on microRNA expression and the motility of OC cells. To achieve this goal, SKOV-3 cancer cells were co-cultured with human normal fibroblasts derived from primary culture (FP-96). Cell viability, expression of tumor suppressor microRNAs and oncomiRs by RT-qPCR, cell migration by wound healing assay and analysis of MMP-2 activity by zymography were performed in SKOV-3 cells. Moreover, α-smooth muscle actin (α-SMA) expression was evaluated by Western blot in FP-96 fibroblasts. Notably, the co-culture downregulated the tumor suppressor miR-29b and increased migration of SKOV-3 cells. In addition, co-culture increased the activity of MMP-2, which is a miR-29 target, and accounted for extracellular matrix remodeling and augmented cellular motility. Concomitantly, the co-culture system induced α-SMA expression in FP-96 fibroblasts, the commonly expressed marker in cancer-associated fibroblasts (CAFs). Our findings suggest that the potential crosstalk between OC cells and fibroblasts in tumor microenvironment may play a key role in the progression of OC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2019.06.001DOI Listing
August 2019

Raloxifene decreases cell viability and migratory potential in prostate cancer cells (LNCaP) with GPR30/GPER1 involvement.

J Pharm Pharmacol 2019 Jul 28;71(7):1065-1071. Epub 2019 Mar 28.

Department of Morphology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu, SP, Brazil.

Objectives: This study evaluated raloxifene (ral) effects on LNCaP prostate tumour cells modulating the activity of GPER1/GPR30 receptors.

Methods: LNCaP cells were submitted for 40/120 min and 12 h to the following treatments: C: RPMI + DMSO; R: RPMI + Ral; G: RPMI + Ral + G15 (GPER1 antagonist). Trypan blue staining measured cell viability. Migratory potential (12 h) was measured by transwell migration test in translucent inserts, which were then stained with DAPI and analysed under a fluorescence microscope for quantification. Cells from 40- and 120-min treatments were subjected to protein extraction to the study of AKT, pAKT, ERK, pERK, ERβ and SIRT1.

Key Findings: There is a reduction in cellular viability in R compared to C at all evaluated times, and an increased cell viability in G when compared to R; cell viability was similar in C and G in all times studied. The migration assay demonstrated a significant decrease in migration potential of tumour cells in R compared to C and G. Ral treatment reduced pERK expression and increased pAKT in the treated groups after 40 min, pointing out to an antiproliferative and apoptotic effect in the GPER1-controlled rapid-effect pathways.

Conclusions: Raloxifene was able to modulate GPER1 in LNCaP prostate tumour cells, decreasing cell viability and their migratory potential.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jphp.13089DOI Listing
July 2019

"Prostate telocytes change their phenotype in response to castration or testosterone replacement".

Sci Rep 2019 03 6;9(1):3761. Epub 2019 Mar 6.

Sao Paulo State University - UNESP, Institute of Biosciences, Laboratory of Extracellular Matrix, Prof. Dr. Antônio Celso Wagner Zanin St., 250, Rubião Júnior District, Botucatu, São Paulo, 18618-689, Brazil.

Telocytes are CD34-positive cells with a fusiform cell body and long, thin cytoplasmic projections called telopodes. These cells were detected in the stroma of various organs, including the prostate. The prostate is a complex gland capable of undergoing involution due to low testosterone levels; and this condition can be reversed with testosterone replacement. Telocyte function in the mature prostate remains to be dermined, and it is not known whether telocytes can take place in tissue remodeling during prostate involution and regrowth. The present study employed structural, ultrastructural and immunohistochemical methods to investigate the telocyte's phenotypes in the ventral prostate (VP) from control (CT), castrated (CS) and testosterone replacement (TR) groups of adult male Wistar rats. Telocytes were found in the subepithelial, perimuscular and interstitical regions around glandular acini. Telocytes from CT animals have condensed chromatin and long and thin telopodes. In CS group, telocytes appeared quiescent and exhibited layers of folded up telopodes. After TR, telocytes presented loose chromatin, abundant rough endoplasmic reticulum and enlarged telopodes, closely associated with bundles of collagen fibrils. We called these cells "telocytes with a synthetic phenotype". As testosterone levels and glandular morphology returned toward to the CT group parameters, after 10 days of TR, these telocytes progressively switched to the normal phenotype. Our results demonstrate that telocytes exhibit phenotypic plasticity upon androgen manipulation and interact with fibroblast and smooth muscle cells to maintain glandular architecture in control animals and during tissue remodeling after hormonal manipulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-40465-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403354PMC
March 2019

Basement membrane extract attenuates the more malignant gene expression profile accentuated by fibronectin in prostate cancer cells.

Mol Cell Biochem 2019 Jan 30;451(1-2):131-138. Epub 2018 Jun 30.

Department of Morphology, Institute of Biosciences of Botucatu - Univ Estadual Paulista (Unesp), Botucatu, Sao Paulo, Brazil.

Prostate cancer (PCa) has high mortality rates, with most of the deaths resulting from the development of metastasis. Fibronectin (FN) plays key roles in cell adhesion and affects the migratory behavior of cells. In the tumor microenvironment and also in the blood plasma during metastasis, FN displays increased expression, however its role in prostate cancer remains poorly understood. This study aimed to unveil the specific roles of FN as a soluble component, alone or in combination with a complex basement membrane. To investigate the impact of FN in neoplastic prostate cells, we evaluated the gene expression of LNCaP cells by RT-qPCR after exposure to soluble FN (25 µg/mL) either alone or in combination with a basement membrane. When FN was the predominant matrix element, such as in blood plasma, PCa tumor cells increased their expression of genes related to an invasive behavior and resistance to apoptosis, including CDH2, ITGA5, AKT1, and BCL2. However, the combined presence of FN and a complex basement membrane had the opposite effect on LNCaP cells, in which the expression levels of CDH2, ITGA5, AKT1, and BCL2 were reduced. Hierarchical clustering analysis with LNCaP and RWPE-1 cells showed that LNCaP cells exposed to an enriched extracellular matrix displayed an expression pattern more similar to that shown by RWPE-1 cells, a cell line that illustrates characteristics of the normal prostate epithelium. These findings provide the groundwork for future studies addressing the role of FN in tumor growth, particularly in the context of cancer evolution/progression from a solid primary tumor to a transitory circulating state.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-018-3399-4DOI Listing
January 2019

Fractal dimension analysis reveals skeletal muscle disorganization in mdx mice.

Biochem Biophys Res Commun 2018 09 6;503(1):109-115. Epub 2018 Jun 6.

Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil. Electronic address:

Duchenne Muscular Dystrophy (DMD) is characterized by muscle extracellular matrix disorganization due to the increased collagen deposition leading to fibrosis that significantly exacerbates disease progression. Fractal dimension analysis is a method that quantifies tissue/cellular disorganization and characterizes complex structures. The first objective of the present study was use fractal analysis to evaluate extracellular matrix disorganization in mdx mice soleus muscle. Next, we mimic a hyper-proliferation of fibrogenic cells by co-culturing NIH3T3 fibroblasts and C2C12 myoblasts to test whether fibroblasts induce disorganization in myoblast arrangement. Here, we show mdx presented high skeletal muscle disorganization as revealed by fractal analysis. Similarly, this method revealed that myoblasts co-cultured with fibroblast also presented cellular arrangement disorganization. We also reanalyzed skeletal muscle microarrays transcriptomic data from mdx and DMD patients that revealed transcripts related to extracellular matrix organization. This analysis also identified Osteoglycin, which was validated as a potential regulator of ECM organization in mdx dystrophic muscles. Our results demonstrate that fractal dimension is useful tool for the analysis of skeletal muscle disorganization in DMD and also reveal a fibroblast-myoblast cross-talk that contributes to "in vitro" myoblast disarrangement.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2018.05.189DOI Listing
September 2018

Bisphenol a and mesenchymal stem cells: Recent insights.

Life Sci 2018 08 18;206:22-28. Epub 2018 May 18.

Department of Morphology, Institute of Biosciences, Univ Estadual Paulista - UNESP, Botucatu, Sao Paulo, Brazil. Electronic address:

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2018.05.023DOI Listing
August 2018

Hyperglycemic condition during puberty increases collagen fibers deposition in the prostatic stroma and reduces MMP-2 activity.

Biochem Biophys Res Commun 2017 12 6;493(4):1581-1586. Epub 2017 Oct 6.

Department of Morphology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil. Electronic address:

Puberty is an important period for the growth and maturation of the male reproductive system, and is also a critical window for endocrine or environmental interference. The physiological levels of circulating insulin and hyperglycemic control are important factors for a normal prostate growth. Hyperglycemia during puberty is reported to retard the growth of the prostate gland, with remarkable effects on the epithelial compartment. Here, we investigated the impact of hyperglycemia along with a simultaneous or late insulin replacement on the ventral prostate growth in rats during puberty, paying special attention to the deposition of collagen fibers and activities of gelatinase, matrix metalloproteinase-2 (MMP-2), and -9 (MMP-9). Hyperglycemia was induced by streptozotocin (STZ) administration in 40-day-old male Wistar rats. A subset of hyperglycemic rats underwent an early insulin replacement (three days after the STZ administration), and another subset underwent a late insulin replacement (twenty days after the STZ administration). Animals were euthanized at 60 and/or 80 days of age. The ventral prostatic lobe was processed for picrosirius red staining, type I and III collagen immunohistochemistry, and gelatin zymography. Hyperglycemic animals showed an increased area of collagen fibers in the prostate, which was composed both types of collagens. MMP-2 activity was significantly reduced in the hyperglycemic animals, while MMP-9 activity was very low and showed no alteration. The simultaneous and late insulin administration restored collagen content and MMP-2 activity. In conclusion, puberty is a critical window for prostate maturation and type-1 diabetes-induced hyperglycemia affects the ratio of the prostatic parenchymal and stromal growth, leading to fibrotic tissues by also MMP-2 down regulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2017.10.022DOI Listing
December 2017

Fibrillar collagen genes are not coordinately upregulated with TGF β1 expression in finasteride-treated prostate.

Cell Biol Int 2017 Nov 31;41(11):1214-1222. Epub 2017 May 31.

Department of Morphology, Institute of Biosciences-Sao Paulo State University (Unesp), Botucatu, Sao Paulo, Brazil.

Benign prostatic hyperplasia (BPH) is the most common cause of lower urinary tract symptoms (LUTS) in older men. In this regard, recent studies have attempted to define the relationships between prostatic fibrosis, LUTS, and increased expression of transforming growth factor β1 (TGF β1) in BHP. Therapeutic approaches for BPH such as 5-α-reductase inhibitors and alpha-adrenergic blocking agents increase TGF β1 expression in the prostatic tissue. Here, we investigated the effects of the 5-α-reductase inhibitor-finasteride-on rat ventral prostate tissue, especially with regard to the tissue distribution and gene expression of fibrillar collagens. Adult Wistar rats (n = 15) were treated with finasteride (25 mg/kg/day) by subcutaneous injection for 7 and 30 days. Age-matched, vehicle-treated (n = 15) adult Wistar rats were used as control. Finasteride treatment reduced prostate size and increased the area of types I and III collagen fibers in the prostatic stroma. As expected, TGF β1 mRNA expression was upregulated by finasteride treatment. However, COL1A1 and COL3A1 mRNA expressions decreased after both 7 and 30 days of finasteride treatment, suggesting that finasteride treatment promotes prostate parenchyma and stroma changes, which lead to the observed types I and III collagen remodeling without de novo collagen synthesis. The upregulation of TGF β1 mRNA and protein associated with the 5-α-reductase inhibitor is more closely related to epithelial and stromal cell death pathways than to prostatic fibrosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbin.10787DOI Listing
November 2017

MMP-2 and MMP-9 activities and TIMP-1 and TIMP-2 expression in the prostatic tissue of two ethanol-preferring rat models.

Anal Cell Pathol (Amst) 2015 15;2015:954548. Epub 2015 Jul 15.

Department of Anatomy, Institute of Biosciences, Universidade Estadual Paulista (UNESP), 18618-970 Botucatu, SP, Brazil.

We investigated whether chronic ethanol intake is capable of altering the MMP-2 and MMP-9 activities and TIMP-2 and TIMP-1 expression in the dorsal and lateral prostatic lobes of low (UChA) and high (UChB) ethanol-preferring rats. MMP-2 and MMP-9 activities and TIMP-1 and TIMP-2 expression were significantly reduced in the lateral prostatic lobe of the ethanol drinking animals. Dorsal prostatic lobe was less affected showing no significant alterations in these proteins, except for a reduction in the TIMP-1 expression in UChA rats. These important findings demonstrate that chronic ethanol intake impairs the physiological balance of the prostate extracellular matrix turnover, through downregulation of MMPs, which may contribute to the development of prostatic diseases. Furthermore, since these proteins are also components of prostate secretion, the negative impact of chronic ethanol intake on fertility may also involve reduction of MMPs and TIMPs in the seminal fluid.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2015/954548DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4518171PMC
March 2016

The Anti-Inflammatory Effects of the Methanolic Extract and Fractions from Davilla elliptica St. Hil. (Dilleniaceae) on Bothrops jararaca Envenomation.

Int J Mol Sci 2015 Jun 2;16(6):12454-66. Epub 2015 Jun 2.

Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista-UNESP, CEP 18618-970 Botucatu, São Paulo, Brazil.

Inflammation and haemorrhage are the main characteristics of tissue injury in botropic envenomation. Although some studies have shown that anti-venom prevents systemic reactions, it is not efficient in preventing tissue injury at the site of the bite. Therefore, this work was undertaken to investigate the anti-inflammatory effects of the methanolic extract and fractions from D. elliptica and to evaluate the role of matrix metalloproteinases (MMPs) in this process. Effects of the extract and fractions from D. elliptica were evaluated using a carrageenan-induced paw oedema model in rats, and leukocyte rolling was visualized by intravital. The quantification of MMPs activities (MMP-2 and MMP-9) extracted from the dermis of mice treated with extract and fractions alone or incubated with venom was determined by zymographic analyses. Our results show that intraperitoneal (i.p.) injection of fractions significantly reduced paw oedema after the carrageenan challenge. Treatment with the tannins fraction also resulted in considerable inhibition of the rolling of leukocytes and this fraction was able to decrease the activation of MMP-9. These results confirmed the anti-inflammatory activity of the methanolic extract and tannins fraction of D. elliptica and showed that the dermonecrosis properties of B. jararaca venom might be mediated through the inhibition of MMP-9 activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms160612454DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490454PMC
June 2015

Terminalia catappa L.: a medicinal plant from the Caribbean pharmacopeia with anti-Helicobacter pylori and antiulcer action in experimental rodent models.

J Ethnopharmacol 2015 Jan 24;159:285-95. Epub 2014 Nov 24.

Univ. Estadual Paulista-UNESP - Departamento de Fisiologia, Instituto de Biociências, CEP 18618-970 Botucatu, SP, Brazil. Electronic address:

Ethnopharmacological Relevance: Terminalia catappa L. (Combretaceae) is a medicinal plant listed as a pharmacopeia vegetable from Caribbean to treat gastritis. The objective of this study was to evaluate the gastroprotective and healing effect of the aqueous fraction (FrAq) obtained from the leaves of Terminalia catappa and to determine the antiulcer mechanism of action in experimental rodent models and its activity to Helicobacter pylori.

Material And Methods: In rodents, the FrAq was challenged by different necrotizing agents, such as absolute ethanol and ischemia-reperfusion injury. The antiulcer mechanism of action of FrAq was assessed and the healing effects of the fraction after seven and 14 days of treatment was evaluated by matrix metalloproteinase activity (MMP-2 and MMP-9). The toxicological effect of subacute treatment with FrAq during 14 days of treatment was also analyzed. The anti-Helicobacter pylori activity was determined by microdilution. The phytochemical study of the fraction was analyzed by experiments with FIA-ESI-IT-MS(n) (Direct Flow Analysis-ionization Electrospray Ion Trap Tandem Mass Spectrometry) and high performance liquid chromatography (HPLC) coupled to a photodiode array (PDA).

Results: Oral treatment with FrAq (25mg/kg) significantly decreased the number of ulcerative lesions induced by ethanol and ischemia/reperfusion injury. The action of FrAq was mediated by the activation of defensive mucosa-protective factors, such as increases in mucus production, the nitric oxide (NO) pathway and endogenous prostaglandins. Oral treatment with FrAq for seven and 14 days significantly reduced the lesion area (80% and 37%, respectively) compared to the negative control group. Analyses of MMP-9 and MMP-2 activity from gastric mucosa confirmed the accelerated gastric healing effect of FrAq. This extract also presented considerable activity against Helicobacter pylori. The mass spectrum and MS/MS of the aqueous fraction indicates the existence of many different phenolic compounds, including punicalagin, punicalin, and gallagic acid, among others.

Conclusions: We concluded that FrAq from Terminalia catappa leaves has excellent preventive and curative effects on acute and chronic induced gastric ulcers and showed an important profile against Helicobacter pylori.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2014.11.025DOI Listing
January 2015

Cytoxicity and apoptotic mechanism of ruthenium(II) amino acid complexes in sarcoma-180 tumor cells.

PLoS One 2014 17;9(10):e105865. Epub 2014 Oct 17.

Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, University Federal of Goiás-UFG, Goiânia, Goiás, Brazil.

Over the past several decades, much attention has been focused on ruthenium complexes in antitumor therapy. Ruthenium is a transition metal that possesses several advantages for rational antitumor drug design and biological applications. In the present study, five ruthenium complexes containing amino acids were studied in vitro to determine their biological activity against sarcoma-180 tumor cells. The cytotoxicity of the complexes was evaluated by an MTT assay, and their mechanism of action was investigated. The results demonstrated that the five complexes inhibited the growth of the S180 tumor cell line, with IC50 values ranging from 22.53 µM to 50.18 µM, and showed low cytotoxicity against normal L929 fibroblast cells. Flow cytometric analysis revealed that the [Ru(gly)(bipy)(dppb)]PF6 complex (2) inhibited the growth of the tumor cells by inducing apoptosis, as evidenced by an increased number of Annexin V-positive cells and G0/G1 phase cell cycle arrest. Further investigation showed that complex 2 caused a loss of mitochondrial membrane potential; activated caspases 3, caspase-8, and caspase-9 and caused a change in the mRNA expression levels of caspase 3, caspase-9 as well as the bax genes. The levels of the pro-apoptotic Bcl-2 family protein Bak were increased. Thus, we demonstrated that ruthenium amino acid complexes are promising drugs against S180 tumor cells, and we recommend further investigations of their role as chemotherapeutic agents for sarcomas.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105865PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201456PMC
July 2015

Doxazosin treatment alters stromal cell behavior and increases elastic system fibers deposition in rat prostate.

Microsc Res Tech 2010 Oct;73(11):1036-44

Department of Cell Biology, Institute of Biology, UNICAMP-University of Campinas, Campinas, Sao Paulo, Brazil.

Doxazosin (DOX), an α-adrenoceptor antagonist, induces the relaxation of smooth muscle cell tonus and reduces the clinical symptoms of benign prostatic hyperplasia (BPH). However, the effects of DOX in the prostate stromal microenvironment are not fully known. In a previous study, we showed that DOX treatment for 30 days increased deposition of collagen fibers in the three rat prostatic lobes. Herein, we investigated the effects of DOX on stromal cell ultrastructure and elastic fiber deposition. Adult Wistar rats were treated with DOX (25 mg/kg/day); and the ventral, dorsal, and anterior prostates were excised at 30 days of treatment. The prostatic lobes were submitted to histochemical and stereological-morphometric analyze and transmission electron microscopy (TEM). Histochemical staining plus stereological analysis of the elastic fiber system showed that DOX-treated prostatic lobes presented more elaunin and elastic fibers than controls, mainly in the ventral lobe. Ultrastructural analysis showed that fibroblasts and smooth muscle cells from DOX-treated prostates presented active synthetic phenotypes, evidenced by enlarged rough endoplasmic reticulum and Golgi apparatus cisterns, and confirmed the observation of thickened elaunin fibers. Our findings suggest that, under α-adrenergic blockade by DOX, the fibroblasts become more active and smooth muscle cells shift from a predominantly contractile to a more synthetic phenotype. The deposition of collagen and elastic system fibers in the prostatic stroma may counterbalance the absence of smooth muscle tone during α-blockers treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.20828DOI Listing
October 2010

Calcaneal tendon regions exhibit different MMP-2 activation after vertical jumping and treadmill running.

Anat Rec (Hoboken) 2009 Oct;292(10):1656-62

São Paulo State University (UNESP), School of Science and Technology, Department of Physical Education, Presidente Prudente, SP, Brazil.

Increased activity of matrix metalloproteinases (MMPs) -2 and -9 was found in calcaneal tendon after physical training. However, little attention has been given to the distinct biomechanical and tissue structure of the calcaneal tendon's proximal and distal regions. Herein, we evaluated the effect of two types of physical activities on tendon morphology and matrix metalloproteinase activities in the proximal and distal regions of rat calcaneal tendon, separately. Adult male Wistar rats from control, water-adapted, vertical-jumping, and treadmill-running groups were sacrificed after 1 or 4 days of physical exercise, 6 hr after the end of that day's exercise session. Tendons were processed for histology, morphometry, and gelatin zymography. Tendons from adapted and trained animals showed active secretory cells and increased thickness, cellularity, and blood vessel volume fraction of peritendinous sheath, but without inflammatory process. In the proximal region, both pro- and active MMP-2 were increased after vertical jumping, but only pro-MMP-2 was increased after treadmill running. In contrast, in the distal region, both exercise types increased the activity of pro- and active MMP-2, especially treadmill running, which increased the active MMP-2 by about 11- and eightfold, respectively, after 1 and 4 days of training. No activity of MMP-9 was observed in either tendon region in this study. In conclusion, distal and proximal regions of calcaneal tendon exhibit differential intensities of tissue remodeling after treadmill running or vertical jumping and MMP-2, in the absence of inflammation, plays a major role in this adaptive response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ar.20953DOI Listing
October 2009

Differential MMP-2 and MMP-9 activity and collagen distribution in skeletal muscle from pacu (Piaractus mesopotamicus) during juvenile and adult growth phases.

Anat Rec (Hoboken) 2009 Mar;292(3):387-95

Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.

Here, we evaluated collagen distribution and matrix metalloproteinases (MMPs) MMP-2 and MMP-9 activities in skeletal muscle of pacu (Piaractus mesopotamicus) during juvenile and adult growth phases. Muscle samples from juvenile and adult fishes were processed by histochemistry for collagen system fibers and for gelatin-zymography for MMP-2 and MMP-9 activities analysis. Picrosirius staining revealed a myosept, endomysium, and perimysium-like structures in both growth phases and muscle types, with increased areas of collagen fibers in adults, mainly in red muscle. Reticulin staining showed that reticular fibers in the endomysium-like structure were thinner and discontinuous in the red muscle fibers. The zymography revealed clear bands of the pro- MMP-9, active- MMP-9, intermediate- MMP-2, and active- MMP-2 forms in red and white muscle in both growth phases. MMP-2 activity was more intense in juvenile than adult muscle fibers. Comparing the red and white muscle types, MMP-2 activity was significantly higher in red muscle in adult phase only. The activity of MMP-9 forms was similar in juvenile red and white muscles and in the adult red muscle, without any activity in adult white muscle. In conclusion, our results show that, in pacu, the higher activities of MMP-2 and -9 are associated with the rapid muscle growth in juvenile age and in adult fish, these activities are related with a different red and white muscle physiology. This study may contribute to the understanding muscle growth mechanisms and may also contribute to analyse red and the white muscle parameters of firmness and softness, respectively, of the commercial product.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ar.20863DOI Listing
March 2009
-->