Publications by authors named "Feng-Ming Yan"

3 Publications

  • Page 1 of 1

Characteristics of morphology, electrophysiology, and central projections of two sensilla styloconica in Helicoverpa assulta larvae.

Neuroreport 2015 Aug;26(12):703-11

Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China.

The medial and lateral styloconic sensilla, constituting the main taste organs of lepidopterous caterpillars, were investigated in the oligophagous species, Helicoverpa assulta (Guenée) (Lepidoptera: Noctuidae). In this paper, the two sensilla were morphologically and physiologically characterized by scanning electron microscopy and tip recordings, respectively. The central projections of their respective sensory neurons were mapped by anterograde staining experiments combined with confocal laser scanning microscopy. The results showed that the two sensilla are in general morphologically similar. However, the size of the peg on the medial sensillum is significantly greater than that of the lateral. Tobacco leaf saps, sinigrin, and nicotine elicited strong responses from neurons housed by the medial sensillum, whereas sucrose activated primarily the lateral sensillum. All stained neurons in either sensillum showed a projection pattern involving axons entering the subesophageal ganglion through the ipsilateral maxillary and passing further on through the ipsilateral circumesophageal connective to the tritocerebrum of the brain. In the subesophageal ganglion, the axons targeted two areas: the ventrolateral section and the region near the neuromere midline. One distinction between the staining patterns originating from the two sensilla, however, is that axons arising from the medial sensillum, and not the lateral, give off some additional neural branches in the subesophageal ganglion including a few arborizations surrounding a tract, plus a long process extending posteriorly along the midline. Differences in the central projections derived from the two sensilla styloconica have not been reported previously.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/WNR.0000000000000413DOI Listing
August 2015

Central projections of gustatory receptor neurons in the medial and the lateral sensilla styloconica of Helicoverpa armigera larvae.

PLoS One 2014 16;9(4):e95401. Epub 2014 Apr 16.

Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China.

Food selection behavior of lepidopteran larvae is predominantly governed by the activation of taste neurons present in two sensilla styloconica located on the galea of the maxilla. In this study, we present the ultrastructure of the sensilla styloconica and the central projection pattern of their associated receptor neurons in larvae of the heliothine moth, Helicoverpa armigera. By means of light microscopy and scanning electron microscopy, the previous findings of two morphologically fairly similar sensilla comprising a socketed conic tip inserted into a large peg were confirmed. However, the peg size of the medial sensillum was found to be significantly bigger than that of the lateral sensillum. The sensory neurons derived from each sensillum styloconicum were mapped separately using anterograde staining experiments combined with confocal laser-scanning microscopy. For determining the afferents' target regions relative to each other, we reconstructed the labeled axons and placed them into a common reference framework. The sensory axons from both sensilla projected via the ipsilateral maxillary nerve to the suboesophageal ganglion and further through the ipsilateral circumoesophageal connective to the brain. In the suboesophageal ganglion, the sensory projections targeted two areas of the ipsilateral maxillary neuropil, one located in the ventrolateral neuromere and the other adjacent to the neuromere midline. In the brain, the axon terminals targeted the dorso-anterior area of the ipsilateral tritocerebrum. As confirmed by the three-dimensional reconstructions, the target regions of the neural projections originating from each of the two sensilla styloconica were identical.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095401PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3989337PMC
June 2015

Fine structure and primary sensory projections of sensilla located in the labial-palp pit organ of Helicoverpa armigera (Insecta).

Cell Tissue Res 2013 Sep 5;353(3):399-408. Epub 2013 Jun 5.

Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China.

The fine structure and primary sensory projections of sensilla located in the labial-palp pit organ of the cotton bollworm Helicoverpa armigera (Insecta, Lepidoptera) are investigated by scanning electron and transmission electron microscopy combined with confocal laser scanning microscopy. The pit organ located on the third segment of the labial palp is about 300 μm deep with a 60-μm-wide opening, each structure containing about 1200 sensilla. Two sensillum types have been found, namely hair-shaped and club-shaped sensilla, located on the upper and lower half of the pit, respectively. Most sensilla possess a single dendrite. The dendrite housed by the club-shaped sensilla is often split into several branches or becomes lamellated in the outer segment. As reported previously, the sensory axons of the sensilla in the labial pit organ form a bundle entering the ipsilateral side of the subesophageal ganglion via the labial palp nerve and project to three distinct areas: the labial pit organ glomerulus in each antennal lobe, the subesophageal ganglion and the ventral nerve cord. In the antennal lobe, the labial pit organ glomerulus is innervated by sensory axons from the labial pit organ only; no antennal afferents target this unit. One neuron has been found extending fine processes into the subesophageal ganglion and innervating the labial palp via one branch passing at the base of the labial palp nerve. The soma of this assumed motor neuron is located in the ipsilateral cell body layer of the subesophageal ganglion. Our results provide valuable knowledge concerning the neural circuit encoding information about carbon dioxide and should stimulate further investigations directed at controlling pest species such as H. armigera.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-013-1657-zDOI Listing
September 2013
-->