Publications by authors named "Felix Nebeling"

2 Publications

  • Page 1 of 1

Elevated expression of complement C4 in the mouse prefrontal cortex causes schizophrenia-associated phenotypes.

Mol Psychiatry 2021 Apr 9. Epub 2021 Apr 9.

INSERM UMR-S 1270, Paris, France.

Accumulating evidence supports immune involvement in the pathogenesis of schizophrenia, a severe psychiatric disorder. In particular, high expression variants of C4, a gene of the innate immune complement system, were shown to confer susceptibility to schizophrenia. However, how elevated C4 expression may impact brain circuits remains largely unknown. We used in utero electroporation to overexpress C4 in the mouse prefrontal cortex. We found reduced glutamatergic input to pyramidal cells of juvenile and adult, but not of newborn C4-overexpressing (C4-OE) mice, together with decreased spine density, which mirrors spine loss observed in the schizophrenic cortex. Using time-lapse two-photon imaging in vivo, we observed that these deficits were associated with decreased dendritic spine gain and elimination in juvenile C4-OE mice, which may reflect poor formation and/or stabilization of immature spines. In juvenile and adult C4-OE mice, we found evidence for NMDA receptor hypofunction, another schizophrenia-associated phenotype, and synaptic accumulation of calcium-permeable AMPA receptors. Alterations in cortical GABAergic networks have been repeatedly associated with schizophrenia. We found that functional GABAergic transmission was reduced in C4-OE mice, in line with diminished GABA release probability from parvalbumin interneurons, lower GAD67 expression, and decreased intrinsic excitability in parvalbumin interneurons. These cellular abnormalities were associated with working memory impairment. Our results substantiate the causal relationship between an immunogenetic risk factor and several distinct cortical endophenotypes of schizophrenia and shed light on the underlying cellular mechanisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-021-01081-6DOI Listing
April 2021

Long-term in vivo imaging of dendritic spines in the hippocampus reveals structural plasticity.

J Neurosci 2014 Oct;34(42):13948-53

German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany

Hippocampal function is important for learning and memory. During memory processing, hippocampal CA1 neurons play a crucial role by integrating excitatory synaptic input from CA3 and the entorhinal cortex. These neurons receive excitatory input almost exclusively on dendritic spines. The formation and elimination--structural plasticity--of dendritic spines reflect wiring changes within the hippocampal network. Despite the relevance of the hippocampus in learning and memory, most in vivo data on structural plasticity derive from cortical regions. We established a chronic hippocampal window approach using two-photon microscopy to visualize dendritic spines throughout all CA1 hippocampal layers and over a time course of weeks. Moreover, even granule cells in dentate gyrus could be reliably detected. We found that the spine density in stratum radiatum (∼1.1 per micrometer) remained stable over weeks. However, a small fraction (3.4%) of spines were formed and eliminated between imaging sessions, which demonstrated that spines of CA1 neurons exhibit structural plasticity in adult mice. In addition, we tested for possible inflammatory or behavioral side effects of hippocampal window implantation. Mice exhibited a transient increase in microgliosis and astrogliosis, which declined within a few weeks. We did not detect any difference in behavioral performance in an open-field and contextual fear-conditioning paradigm. In conclusion, hippocampal long-term two-photon imaging revealed structural plasticity of dendritic spines in CA1 pyramidal neurons. This approach may provide a powerful tool to analyze changes in neuronal network rewiring during hippocampal learning and memory processes in health and disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.1464-14.2014DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6705298PMC
October 2014