Publications by authors named "Fatma M Saleh"

5 Publications

  • Page 1 of 1

Novel [l,2,4]triazolo[3,4-a]isoquinoline chalcones as new chemotherapeutic agents: Block IAP tyrosine kinase domain and induce both intrinsic and extrinsic pathways of apoptosis.

Invest New Drugs 2021 Feb 28;39(1):98-110. Epub 2020 Aug 28.

Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.

Two novel chemotherapeutic chalcones were synthesized and their structures were confirmed by different spectral tools. Theoretical studies such as molecular modeling were done to detect the mechanism of action of these compounds. In vitro cytotoxicity showed a strong effect against all tested cell lines (MCF7, A459, HepG2, and HCT116), and low toxic effect against normal human melanocytes (HFB4). The lung carcinoma cell line was chosen for further molecular studies. Real-time PCR demonstrated that the two compounds upregulated gene expression of (BAX, p53, casp-3, casp-8, casp-9) genes and decreased the expression of anti-apoptotic genes bcl2, CDK4, and MMP1. Flow-cytometry indicated that cell cycle arrest of A459 was induced at the G2/M phase and the apoptotic percentage increased significantly compared to the control sample. Cytochrome c oxidase and VEGF enzyme activity were detected by ELISA assay. SEM tool was used to follow the morphological changes that occurred on the cell surface, cell granulation, and average roughness of the cell surface. The change in the number and morphology of mitochondria, cell shrinkage, increase in the number of cytoplasmic organelles, membrane blebbing, chromatin condensation, and apoptotic bodies were observed using TEM. The obtained data suggested that new chalcones exerted their pathways on lung carcinoma through induction of two pathways of apoptosis. Graphical abstract Novel chalcones were prepared and confirmed by different spectral tools. Docking simulations were done to detect the mechanism of action. In vitro cytotoxicity indicated a strong effect against different cancer cell lines and low toxic effects against normal human melanocytes (HFB4). The lung carcinoma cell line was chosen for further molecular studies that include Real-time PCR, Flow-cytometry, Cytochrome c oxidase, and ELISA assay. SEM and TEM tool were used to follow the morphological changes occurred on the cell surface.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10637-020-00987-2DOI Listing
February 2021

Synthesis, Cytotoxicity and Docking Simulation of Novel Annulated Dihydroisoquinoline Heterocycles.

Mini Rev Med Chem 2020 ;20(12):1166-1178

4National Organization for Drug Control and Research, Dokki, Giza, Egypt.

Objective: Coupling of ethyl 2-(6,7-dimethoxy-3,4-dihydroisoquinolin-1-yl)acetate 2 with diazotized anilines in ethanol in the presence of sodium acetate yielded 2-(2-arylhydrazono)-2-(6,7- dimethoxy-3,4-dihydroisoquinolin-1-yl)acetate (4a-f).

Methods: Treatment of 2 with α-bromoketones 6a-f in dry benzene at reflux gave the corresponding isoquinolinium bromides 7a-f. Refluxing of each of the salts 7a-f in dry benzene and in the presence of triethylamine yielded 2-arylpyrrolo-[2,1-a]isoquinoline structures 8a-f, that converted to ethyl (E)-8,9- dimethoxy-3-(phenyldiazen-yl)-2-(aryl)-5,6-dihydropyrrolo[2,1-a]isoquinoline-1-carboxylate (9a-f) upon treatment with diazotized anilines 3 in ethanol in the presence of sodium acetate.

Results And Conclusion: Cytotoxic assay was performed for in vitro antitumor screening against caucasian breast adenocarcinoma (MCF7), hepatocellular carcinoma (HepG2) and colorectal carcinoma (HCT-116) cell lines. The results were compared with the standard anticancer drug (doxorubicin). Molecular docking using MOE 2014.09 software was carried out for the most potent compound 4d, which showed the highest binding affinity towards the four tested proteins and thus initiated apoptosis of cancer cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389557520666200130104632DOI Listing
February 2021

Molecular Docking Study, Cytotoxicity, Cell Cycle Arrest and Apoptotic Induction of Novel Chalcones Incorporating Thiadiazolyl Isoquinoline in Cervical Cancer.

Anticancer Agents Med Chem 2020 ;20(1):70-83

Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.

Background: Chalcones are naturally occurring compounds found in various plant species which are widely used for the traditional popular treatments. Chalcones are distinguished secondary metabolites reported to display diverse biological activities such as antiviral, antiplatelet, anti-inflammatory, anticancer, antibacterial and antioxidant agents. The presence of a,ß-unsaturated carbonyl group in chalcones is assumed to be responsible for their bioactivity. In addition, heterocyclic compounds having nitrogen such as isoquinolines are of considerable interest as they constitute the core structural element of many alkaloids that have enormous pharmacological activities.

Objective: The objective of this study is the synthesis and biological activity of novel chalcones incorporating thiadiazolyl isoquinoline as potential anticancer candidates. Different genetic tools were used in an attempt to know the mechanism of action of this compound against breast cancer.

Methods: An efficient one pot synthesis of novel chalcones incorporating thiadiazolyl isoquinoline was developed. The cytotoxic activity of the novel synthesized compounds was performed against four different kinds of cancer cell lines.

Results: Among all the tested derivatives, chalcone 3 has the best cytotoxic profile against A549, MCF7, and HeLa cell lines, with IC50s 66.1, 51.3, and 85.1μM, respectively. Molecular docking studies for chalcone 3 revealed that CDK2, and EGFRTK domains have strong binding affinities toward the novel chalcone 3, while tubulin-colchicine-ustiloxin, and VEGFRTK domains illustrated moderate mode of binding.

Conclusion: We have developed an efficient method for the synthesis of novel chalcones incorporating thiadiazolyl isoquinoline. All compounds showed better cytotoxicity results against four kinds of cancer cell lines (A549, MCF7, HCT116, and HELA cells). The results depicted that chalcone 3 has a high and promising cytotoxic effect against HELA cell line and the mechanism of cytotoxicity was widely studied through different theoretical and experimental tools. Thus, the newly synthesized derivative 3 can be utilized as a novel chemotherapeutic compound for cervical carcinoma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1871520619666191024121116DOI Listing
January 2021

Biological Activity, Apoptotic Induction and Cell Cycle Arrest of New Hydrazonoyl Halides Derivatives.

Anticancer Agents Med Chem 2019 ;19(9):1141-1149

Chemistry Department (Biotechnology- Biomolecular Chemistry Program), Faculty of Science, Cairo University, Giza, Egypt.

Background: The hydrazonoyl halides are presently an important target in the field of medicinal chemistry. The interest in the chemistry of hydrazonoyl halides is a consequence of the fact that they undergo a wide variety of reactions which provide routes to a myriad of both heterocyclic and acyclic compounds. In addition, they have diverse biological activities such as antiviral, anthelmintic, antiarthropodal, fungicidal, herbicidal, insecticidal, pesticidal, acaricidal and miticidal Activity correlated to the presence of hydrazonoyl halides. Moreover, many applications in both industrial and pharmaceutical fields have been found to be associated with these halides. Depending on the above facts and continuation to our work, we herein report on the evaluation of the anticancer activity of these two halides prepared according to the published work and trying to know their molecular mechanism that they proceed to stop proliferation and metastasis of tumor cells by molecular tools such as real time PCR using different apoptotic genes, and cell cycle assay.

Objective: The goal of this present study is to bring attention to the biological activities of hydrazonoyl halides and the molecular pathway they follow to exert their role in apoptotic death of cancer cell.

Methods: Synthesis of hydrazonoyl halides 2c and 2f. The cytotoxic effect against different human cancer cell lines PC3, HepG-2, HCT-116, MCF-7 and also on normal human cell lines as MCF-10 and MCF-12 in a monolayer culture model was evaluated. Their mechanism of action inside cancer cell was evaluated using different molecular tools.

Conclusion: Strong and promising chemotherapeutic hydrazonoyl halides (2a-2f) were evaluated for their different biological activities. As antimicrobial agents, results indicated that three compounds 2a, 2e and 2f exhibited high activity against two tested gram positive bacteria Staphylococcus aureus, Bacillus subtilis, and gram negative ones Escherichia coli, and Pseudomonas aeruginosa, the rest of the compounds were found to be moderately active against the tested microorganisms. Regarding their antifungal effect, compound 2c exhibited potent and promising effect against Candida albicans, while 2b was the most potent toward Aspergillus flavus Link. The compound 2f has repellent effect. With respect to the in vitro antitumor screening, this was done on different human cancer cell lines; namely PC3, HepG-2, HCT-116, MCF-7 and also on normal human cell lines; as MCF-10 and MCF-12 (normal breast epithelial cell and non-tumorigenic breast epithelial cell line) in a monolayer culture model where screening has been conducted at 100μg/ml (single dose test). Single dose test (100μg/ml) showed that, in case of PC3, all compounds have cytotoxic activity over 90% inhibition, 4 compounds have cytotoxic activity with 100% inhibition with Human colon cancer cell line, 4 compounds showed over 90% inhibition with MCF7 cell line and 4 compounds showed cytotoxic activity over 90% inhibition with HepG-2. Results of IC50 values for most promising compounds showed compounds with values lower than 20μM for all tested human cancer cell line. The promising hydrazonoyl halide 2c and 2f were selected for molecular study to know how they could act inside cancer cell causing death. Two biochemical tests were performed using the two halides 2c and 2f to predict their mechanism of action against breast carcinoma. Real time PCR analysis indicates that the two compounds induced the apoptosis of MCF7 cells through the up regulation of caspase-3, BAX mediated P53 mechanism but unfortunately, they promote the expression of anti-apoptotic protein BCL2. Also, cell cycle assay was performed using two different cell lines MCF7 and HCT116 and data revealed that the two compounds 2c and 2f induced apoptotic cells death of both lines via cell growth arrest at G2/M phase. In addition, it was noted that 2c induced arrest in the two lines more efficiently than 2f at G2/M phase.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1871520619666190306123658DOI Listing
April 2020

Synthesis, Cytotoxicity, Antimicrobial and Docking Simulation of Novel Pyrazolo[3,4-d]pyrimidine and pyrazolo[4,3-e][1,2,4]triazolo[3,4-c] pyrimidine Derivatives.

Mini Rev Med Chem 2019 ;19(8):657-670

Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.

Background: Isobutyrohydrazonoyl bromide 1 was used as a precursor for the synthesis of 4-imino-3-isopropyl-1-(4-nitrophenyl)-1,4-dihydro-5H-pyrazolo[3,4-d]pyrimidin-5-amine 4, which was converted into hydrazino derivative 5 by heating with hydrazine hydrate at reflux. Hydrazino, as well as imino-amino derivatives, underwent condensation and cyclization reactions to give pyrazolo[ 3,4-d]pyrimidine and pyrazolo[4,3-e][1,2,4]triazolo[3,4-c]pyrimidine derivatives, respectively.

Method: Antimicrobial studies are performed using two-gram positive bacteria and two-gram negative bacteria.

Results: Data revealed that compound 9a is the most promising antibacterial agent with high efficiency (low MIC value (48 μg/ml)). The cytotoxic assay was investigated for in vitro antitumor screening against Caucasian breast adenocarcinoma MCF7, hepatocellular carcinoma HepG2 and colon carcinoma HCT-116 cell lines.

Conclusion: The results are compared with doxorubicin standard anticancer drugs as well as normal cell lines like MCF10 and MCF12. Molecular docking was carried out for the highest potent compound 8c with the binding site of dihydrofolate reductase enzyme DHFR PDB:ID (1DLS).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389557518666181017162459DOI Listing
June 2019