Publications by authors named "Fatemeh Borhani"

2 Publications

  • Page 1 of 1

Endometrial pinopode biomarkers: Molecules and microRNAs.

J Cell Physiol 2018 12 3;233(12):9145-9158. Epub 2018 Jul 3.

Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

Ultrastructural changes on the apical surface of the luminal epithelium of the uterus are known as pinopodes. Their morphology in species and in special species is associated with different results about size, duration, and percentage of surface area covered by pinopodes. The content of pinopodes is different in rodents and humans. In mice and rats pinopodes have many vacuoles and no organelle that extends to the actin stalk above the microvilli. Human pinopodes do not have a large vacuole and contain the golgi complex, a rough endoplasmic reticulum, secretory vesicles, and mitochondria that extend from the entire cell surface. It has been suggested that pinopodes are good markers of endometrial receptivity and implantation window. There are several molecular markers related to the presence of pinopodes, including integrins, leukemia inhibiting factor (LIF), l-selectin, HOXA10, glutaredoxin, glycodelinA, heparin-binding epidermal growth factor, mucins, and microRNAs (miRNAs). Multiple lines of evidence have indicated that miRNAs could affect the expression of LIF and pinopodes in the endometrium and these molecules play key roles in implantation window processes. Here, we have summarized the morphology and function of pinopodes. Moreover, we have highlighted several molecules in relation to pinopodes that could be used as biomarkers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.26852DOI Listing
December 2018

Circulating microRNAs as diagnostic and therapeutic biomarkers in gastric and esophageal cancers.

J Cell Physiol 2018 11 19;233(11):8538-8550. Epub 2018 Jun 19.

Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.

Gastric and esophageal cancers are as main cancers of the gastrointestinal (GI) tract, which are associated with poor diagnosis and survival. Several efforts were made in the past few decades to finding effective therapeutic approaches, but these approaches had several problems. Finding new biomarkers is a critical step in finding new approaches for the treatment of these cancers. Finding new biomarkers that cover various aspects of the diseases could provide a choice of suitable therapies and better monitoring of patients with these cancers. Among several biomarkers tissue specific and circulating microRNAs (miRNAs) have emerged as powerful candidates in the diagnosis of gastric and esophageal cancers. MiRNAs are small noncoding single-stranded RNA molecules that are found in the blood and regulate gene expression. These have numerous characteristics that make them suitable for being used as ideal biomarkers in cancer diagnosis. Research has indicated that the level and profile of miRNA in serum and plasma are very high. They are potentially noninvasive and sensitive enough to detect tumors in their primary stages of infection. Multiple lines of evidence indicate that the presence, absence, or deregulation of several circulating miRNAs (i.e., let-7a, miR-21, miR-93, miR-192a, miR-18a, and miR-10b for gastric cancer, and miR-21, miR-375, miR-25-3p, miR-151a-3p, and miR-100-3p for esophageal cancer) are associated with initiation and progression of gastric and esophageal cancers. The aim of this review is to highlight the recent advances in the roles of miRNAs in diagnosis and treatment of gastric and esophageal cancers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.26850DOI Listing
November 2018