Publications by authors named "Fariza Juliana Nordin"

4 Publications

  • Page 1 of 1

Antiproliferative and phytochemical analyses of leaf extracts of ten Apocynaceae species.

Pharmacognosy Res 2011 Apr;3(2):100-6

School of Science, Monash University Sunway Campus, 46150 Petaling Jaya, Selangor, Malaysia.

Background: The anticancer properties of Apocynaceae species are well known in barks and roots but less so in leaves.

Materials And Methods: In this study, leaf extracts of 10 Apocynaceae species were assessed for antiproliferative (APF) activities using the sulforhodamine B assay. Their extracts were also analyzed for total alkaloid content (TAC), total phenolic content (TPC), and radical scavenging activity (RSA) using the Dragendorff precipitation, Folin-Ciocalteu, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays, respectively.

Results: Leaf extracts of Alstonia angustiloba, Calotropis gigantea, Catharanthus roseus, Nerium oleander, Plumeria obtusa, and Vallaris glabra displayed positive APF activities. Extracts of Allamanda cathartica, Cerbera odollam, Dyera costulata, and Kopsia fruticosa did not show any APF activity. Dichloromethane (DCM) extract of C. gigantea, and DCM and DCM:MeOH extracts of V. glabra showed strong APF activities against all six human cancer cell lines. Against breast cancer cells of MCF-7 and MDA-MB-231, DCM extracts of C. gigantea and N. oleander were stronger than or comparable to standard drugs of xanthorrhizol, curcumin, and tamoxifen. All four extracts of N. oleander were effective against MCF-7 cells. Extracts of Kopsia fruticosa had the highest TAC while those of Dyera costulata had the highest TPC and RSA. Extracts of C. gigantea and V. glabra inhibited the growth of all six cancer cell lines while all extracts of N. oleander were effective against MCF-7 cells.

Conclusion: Extracts of C. gigantea, V. glabra, and N. oleander therefore showed great promise as potential candidates for anticancer drugs. The wide-spectrum APF activities of these three species are reported for the first time and their bioactive compounds warrant further investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4103/0974-8490.81957DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129018PMC
April 2011

Assessment of antiproliferative and antiplasmodial activities of five selected Apocynaceae species.

BMC Complement Altern Med 2011 Jan 14;11. Epub 2011 Jan 14.

School of Science, Monash University Sunway Campus, Bandar Sunway, 46150 Petaling Jaya, Selangor, Malaysia.

Background: Studies have shown that the barks and roots of some Apocynaceae species have anticancer and antimalarial properties. In this study, leaf extracts of five selected species of Apocynaceae used in traditional medicine (Alstonia angustiloba, Calotropis gigantea, Dyera costulata, Kopsia fruticosa and Vallaris glabra) were assessed for antiproliferative (APF) and antiplasmodial (APM) activities, and analysed for total alkaloid content (TAC), total phenolic content (TPC) and radical-scavenging activity (RSA). As V. glabra leaf extracts showed wide spectrum APF and APM activities, they were further screened for saponins, tannins, cardenolides and terpenoids.

Methods: APF and APM activities were assessed using the sulphorhodamine B and lactate dehydrogenase assays, respectively. TAC, TPC and RSA were analysed using Dragendorff precipitation, Folin-Ciocalteu and DPPH assays, respectively. Screening for saponins, tannins, cardenolides and terpenoids were conducted using the frothing, ferric chloride, Kedde and vanillin-H2SO4 tests, respectively.

Results: Leaf extracts of A. angustiloba, C. gigantea and V. glabra displayed positive APF activity. Dichloromethane (DCM) extract of C. gigantea, and DCM and DCM:MeOH extracts of V. glabra showed strong APF activity against all six human cancer cell lines tested. DCM extract of A. angustiloba was effective against three cancer cell lines. Against MCF-7 and MDA-MB-231 cell lines, DCM extract of C. gigantea was stronger than standard drugs of xanthorrhizol, curcumin and tamoxifen. All five species were effective against K1 strain of Plasmodium falciparum and three species (C. gigantea, D. costulata and K. fruticosa) were effective against 3D7 strain. Against K1 strain, all four extracts of V. glabra displayed effective APM activity. Extracts of D. costulata were effective against 3D7 strain. Selectivity index values of extracts of A. angustiloba, C. gigantea and V. glabra suggested that they are potentially safe for use to treat malaria. Extracts of K. fruticosa had the highest TAC while D. costulata had the highest TPC and RSA. Phytochemical screening of extracts of V. glabra also showed the presence of terpenoids, tannins and saponins.

Conclusions: Leaf extracts of C. gigantea and V. glabra showed great promise as potential candidates for anticancer drugs as they inhibited the growth of all six cancer cell lines. Against K1 strain of P. falciparum, all four extracts of V. glabra displayed effective APM activity. The wide spectrum APF and APM activities of V. glabra are reported for the first time and this warrants further investigation into its bioactive compounds.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1472-6882-11-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032759PMC
January 2011

Antiproliferative property and apoptotic effect of xanthorrhizol on MDA-MB-231 breast cancer cells.

Anticancer Res 2008 Nov-Dec;28(6A):3677-89

Bioassay Unit, Herbal Medicine Research Center, Institute for Medical Research, Jalan Pahang, Kuala Lumpur, Malaysia.

Xanthorrhizol is a natural sesquiterpenoid compound isolated from the rhizome of Curcuma xanthorrhizza Roxb (Zingerberaceae). Recent studies of xanthorrhizol in cell cultures strongly support the role of xanthorrhizol as an antiproliferative agent. In our study, we tested the antiproliferative effect of xanthorrhizol using different breast cancer cell lines. The invasive breast cancer cell line, MDA-MB-231, was then selected for further investigations. Treatment with xanthorrhizol caused 50% growth inhibition on MDA-MB-231 cells at 8.67 +/- 0.79 microg/ml as determined by sulforhodamine B (SRB) assay. Hoechst 33258 nuclear staining assay showed the rate of apoptosis of MDA-MB-231 cells to increase in response to xanthorrhizol treatment. Immunofluorescence staining using antibody MitoCapture and fluorescein isothiocyanate (FITC)-labeled cytochrome c revealed the possibility of altered mitochondrial transmembrane potential and the release of cytochrome c respectively. This was further confirmed by Western-blotting, where cytochrome c was showed to migrate from mitochondrial fraction to the cytosol fraction of treated MDA-MB-231 cells. Caspase activity assay showed the involvement of caspase-3 and caspase-9, but not caspase-6 or caspase-8 in MDA-MB-231 apoptotic cell death. Subsequently, cleavage of PARP-1 protein is suggested. These data suggest treatment with xanthorrhizol modulates MDA-MB-231 cell apoptosis through the mitochondria-mediated pathway subsequent to the disruption of mitochondrial transmembrane potential, release of cytochrome c, activation of caspase-3 and caspase-9, and the modulation of PARP-1 protein.
View Article and Find Full Text PDF

Download full-text PDF

Source
March 2009

Combined xanthorrhizol-curcumin exhibits synergistic growth inhibitory activity via apoptosis induction in human breast cancer cells MDA-MB-231.

Cancer Cell Int 2009 Jan 2;9. Epub 2009 Jan 2.

Bioassay Unit, Herbal Medicine Research Center, Institute for Medical Research, Jalan Pahang, Kuala Lumpur, Malaysia.

Background: It has been suggested that combined effect of natural products may improve the treatment effectiveness in combating proliferation of cancer cells. The present study was undertaken to evaluate the possibility that the combination of xanthorrhizol and curcumin might show synergistic growth inhibitory effect towards MDA-MB-231 human breast cancer cells via apoptosis induction. The effective dose that produced 50% growth inhibition (GI50) was calculated from the log dose-response curve of fixed-combinations of xanthorrhizol and curcumin generated from the sulforhodamine B (SRB) assay. The experimental GI50 value was used to determine the synergistic activity of the combination treatment by isobolographic analysis and combination-index method. Further investigation of mode of cell death induced by the combination treatment was conducted in the present study.

Results: Isobole analysis revealed that substances interaction was synergistic when xanthorrhizol and curcumin were added concurrently to the cultures but merely additive when they were added sequentially. The synergistic combination treatment was then applied to the cultures to investigate the mode of cell death induced by the treatment. Immunofluorescence staining using antibody MitoCapturetrade mark revealed the possibility of altered mitochondrial transmembrane potential, which is one of the hallmark of apoptosis. Hoechst 33258 nuclear staining assay showed the rate of apoptosis of MDA-MB-231 cells to increase in response to the treatment. Apoptotic cell death was further confirmed by DNA fragmentation assay, where internucleosomal excision of DNA was induced upon treatment with xanthorrhizol-curcumin.

Conclusion: This is the first time the combined cytotoxic effect of xanthorrhizol and curcumin on MDA-MB-231 cells has been documented and our findings provide experimental support to the hypothesis that combined xanthorrhizol-curcumin showed synergistic growth inhibitory activity on MDA-MB-231 cells via apoptosis induction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1475-2867-9-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2630298PMC
January 2009