Publications by authors named "Ezio Bonvini"

42 Publications

A humanized CD3ε-knock-in mouse model for pre-clinical testing of anti-human CD3 therapy.

PLoS One 2021 17;16(2):e0245917. Epub 2021 Feb 17.

Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States of America.

Pre-clinical murine models are critical for translating drug candidates from the bench to the bedside. There is interest in better understanding how anti-human CD3 therapy works based on recent longitudinal studies of short-term administration. Although several models have been created in this pursuit, each have their own advantages and disadvantages in Type-1 diabetes. In this study, we report a murine genetic knock-in model which expresses both a murine and a humanized-CD3ε-exon, rendering it sensitive to manipulation with anti-human CD3. These huCD3εHET mice are viable and display no gross abnormalities. Specifically, thymocyte development and T cell peripheral homeostasis is unaffected. We tested immune functionality of these mice by immunizing them with T cell-dependent antigens and no differences in antibody titers compared to wild type mice were recorded. Finally, we performed a graft-vs-host disease model that is driven by effector T cell responses and observed a wasting disease upon transfer of huCD3εHET T cells. Our results show a viable humanized CD3 murine model that develops normally, is functionally engaged by anti-human CD3 and can instruct on pre-clinical tests of anti-human CD3 antibodies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245917PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7888618PMC
February 2021

Efficacy of Margetuximab vs Trastuzumab in Patients With Pretreated ERBB2-Positive Advanced Breast Cancer: A Phase 3 Randomized Clinical Trial.

JAMA Oncol 2021 Apr;7(4):573-584

Division of Hematology/Oncology, Northwestern University, Chicago, Illinois.

Importance: ERRB2 (formerly HER2)-positive advanced breast cancer (ABC) remains typically incurable with optimal treatment undefined in later lines of therapy. The chimeric antibody margetuximab shares ERBB2 specificity with trastuzumab but incorporates an engineered Fc region to increase immune activation.

Objective: To compare the clinical efficacy of margetuximab vs trastuzumab, each with chemotherapy, in patients with pretreated ERBB2-positive ABC.

Design, Setting, And Participants: The SOPHIA phase 3 randomized open-label trial of margetuximab plus chemotherapy vs trastuzumab plus chemotherapy enrolled 536 patients from August 26, 2015, to October 10, 2018, at 166 sites in 17 countries. Eligible patients had disease progression on 2 or more prior anti-ERBB2 therapies and 1 to 3 lines of therapy for metastatic disease. Data were analyzed from February 2019 to October 2019.

Interventions: Investigators selected chemotherapy before 1:1 randomization to margetuximab, 15 mg/kg, or trastuzumab, 6 mg/kg (loading dose, 8 mg/kg), each in 3-week cycles. Stratification factors were metastatic sites (≤2, >2), lines of therapy (≤2, >2), and chemotherapy choice.

Main Outcomes And Measures: Sequential primary end points were progression-free survival (PFS) by central blinded analysis and overall survival (OS). All α was allocated to PFS, followed by OS. Secondary end points were investigator-assessed PFS and objective response rate by central blinded analysis.

Results: A total of 536 patients were randomized to receive margetuximab (n = 266) or trastuzumab (n = 270). The median age was 56 (27-86) years; 266 (100%) women were in the margetuximab group, while 267 (98.9%) women were in the trastuzumab group. Groups were balanced. All but 1 patient had received prior pertuzumab, and 489 (91.2%) had received prior ado-trastuzumab emtansine. Margetuximab improved primary PFS over trastuzumab with 24% relative risk reduction (hazard ratio [HR], 0.76; 95% CI, 0.59-0.98; P = .03; median, 5.8 [95% CI, 5.5-7.0] months vs 4.9 [95% CI, 4.2-5.6] months; October 10, 2018). After the second planned interim analysis of 270 deaths, median OS was 21.6 months with margetuximab vs 19.8 months with trastuzumab (HR, 0.89; 95% CI, 0.69-1.13; P = .33; September 10, 2019), and investigator-assessed PFS showed 29% relative risk reduction favoring margetuximab (HR, 0.71; 95% CI, 0.58-0.86; P < .001; median, 5.7 vs 4.4 months; September 10, 2019). Margetuximab improved objective response rate over trastuzumab: 22% vs 16% (P = .06; October 10, 2018), and 25% vs 14% (P < .001; September 10, 2019). Incidence of infusion-related reactions, mostly in cycle 1, was higher with margetuximab (35 [13.3%] vs 9 [3.4%]); otherwise, safety was comparable.

Conclusions And Relevance: In this phase 3 randomized clinical trial, margetuximab plus chemotherapy had acceptable safety and a statistically significant improvement in PFS compared with trastuzumab plus chemotherapy in ERBB2-positive ABC after progression on 2 or more prior anti-ERBB2 therapies. Final OS analysis is expected in 2021.

Trial Registration: ClinicalTrials.gov Identifier: NCT02492711.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamaoncol.2020.7932DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823434PMC
April 2021

Development and Preliminary Clinical Activity of PD-1-Guided CTLA-4 Blocking Bispecific DART Molecule.

Cell Rep Med 2020 Dec 22;1(9):100163. Epub 2020 Dec 22.

MacroGenics, Rockville, MD, USA.

Combination immunotherapy with antibodies directed against PD-1 and CTLA-4 shows improved clinical benefit across cancer indications compared to single agents, albeit with increased toxicity. Leveraging the observation that PD-1 and CTLA-4 are co-expressed by tumor-infiltrating lymphocytes, an investigational PD-1 x CTLA-4 bispecific DART molecule, MGD019, is engineered to maximize checkpoint blockade in the tumor microenvironment via enhanced CTLA-4 blockade in a PD-1-binding-dependent manner. , MGD019 mediates the combinatorial blockade of PD-1 and CTLA-4, confirming dual inhibition via a single molecule. MGD019 is well tolerated in non-human primates, with evidence of both PD-1 and CTLA-4 blockade, including increases in Ki67CD8 and ICOSCD4 T cells, respectively. In the ongoing MGD019 first-in-human study enrolling patients with advanced solid tumors (NCT03761017), an analysis undertaken following the dose escalation phase revealed acceptable safety, pharmacodynamic evidence of combinatorial blockade, and objective responses in multiple tumor types typically unresponsive to checkpoint inhibitor therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xcrm.2020.100163DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7762776PMC
December 2020

Preclinical Development of MGC018, a Duocarmycin-based Antibody-drug Conjugate Targeting B7-H3 for Solid Cancer.

Mol Cancer Ther 2020 Sep 23. Epub 2020 Sep 23.

Targeted Therapeutics and Site Operations, MacroGenics, Inc.

B7-H3, also referred to as CD276, is a member of the B7 family of immune regulatory proteins. B7-H3 is overexpressed on many solid cancers, including prostate cancer, renal cell carcinoma, melanoma, squamous cell carcinoma of the head and neck, non-small cell lung cancer and breast cancer. Over-expression of B7-H3 is associated with disease severity, risk of recurrence and reduced survival. In this article, we report the preclinical development of MGC018, an antibody-drug conjugate targeted against B7-H3. MGC018 is comprised of the cleavable linker-duocarmycin payload, valine-citrulline-seco duocarmycin hydroxybenzamide azaindole (vc-seco-DUBA), conjugated to an anti-B7-H3 humanized IgG1/kappa monoclonal antibody through reduced interchain disulfides, with an average drug-to-antibody ratio of ~2.7. MGC018 exhibited cytotoxicity toward B7-H3-positive human tumor cell lines, and exhibited bystander killing of target-negative tumor cells when co-cultured with B7-H3-positive tumor cells. MGC018 displayed potent antitumor activity in preclinical tumor models of breast, prostate and lung cancer, as well as melanoma. Additionally, antitumor activity was observed toward patient-derived xenograft models of breast, prostate and head and neck cancer displaying heterogeneous expression of B7-H3. Importantly, MGC018 exhibited a favorable pharmacokinetic and safety profile in cynomolgus monkeys following repeat-dose administration. The antitumor activity observed preclinically with MGC018, together with the positive safety profile, provides evidence of a potentially favorable therapeutic index and supports the continued development of MGC018 for the treatment of solid cancers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-20-0116DOI Listing
September 2020

Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia.

Blood 2021 Feb;137(6):751-762

Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, MO.

Approximately 50% of acute myeloid leukemia (AML) patients do not respond to induction therapy (primary induction failure [PIF]) or relapse after <6 months (early relapse [ER]). We have recently shown an association between an immune-infiltrated tumor microenvironment (TME) and resistance to cytarabine-based chemotherapy but responsiveness to flotetuzumab, a bispecific DART antibody-based molecule to CD3ε and CD123. This paper reports the results of a multicenter, open-label, phase 1/2 study of flotetuzumab in 88 adults with relapsed/refractory AML: 42 in a dose-finding segment and 46 at the recommended phase 2 dose (RP2D) of 500 ng/kg per day. The most frequent adverse events were infusion-related reactions (IRRs)/cytokine release syndrome (CRS), largely grade 1-2. Stepwise dosing during week 1, pretreatment dexamethasone, prompt use of tocilizumab, and temporary dose reductions/interruptions successfully prevented severe IRR/CRS. Clinical benefit accrued to PIF/ER patients showing an immune-infiltrated TME. Among 30 PIF/ER patients treated at the RP2D, the complete remission (CR)/CR with partial hematological recovery (CRh) rate was 26.7%, with an overall response rate (CR/CRh/CR with incomplete hematological recovery) of 30.0%. In PIF/ER patients who achieved CR/CRh, median overall survival was 10.2 months (range, 1.87-27.27), with 6- and 12-month survival rates of 75% (95% confidence interval [CI], 0.450-1.05) and 50% (95% CI, 0.154-0.846). Bone marrow transcriptomic analysis showed that a parsimonious 10-gene signature predicted CRs to flotetuzumab (area under the receiver operating characteristic curve = 0.904 vs 0.672 for the European LeukemiaNet classifier). Flotetuzumab represents an innovative experimental approach associated with acceptable safety and encouraging evidence of activity in PIF/ER patients. This trial was registered at www.clinicaltrials.gov as #NCT02152956.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood.2020007732DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7885824PMC
February 2021

CAR T Cells Targeting B7-H3, a Pan-Cancer Antigen, Demonstrate Potent Preclinical Activity Against Pediatric Solid Tumors and Brain Tumors.

Clin Cancer Res 2019 04 17;25(8):2560-2574. Epub 2019 Jan 17.

Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California.

Purpose: Patients with relapsed pediatric solid tumors and CNS malignancies have few therapeutic options and frequently die of their disease. Chimeric antigen receptor (CAR) T cells have shown tremendous success in treating relapsed pediatric acute lymphoblastic leukemia, but this has not yet translated to treating solid tumors. This is partially due to a paucity of differentially expressed cell surface molecules on solid tumors that can be safely targeted. Here, we present B7-H3 (CD276) as a putative target for CAR T-cell therapy of pediatric solid tumors, including those arising in the central nervous system.

Experimental Design: We developed a novel B7-H3 CAR whose binder is derived from a mAb that has been shown to preferentially bind tumor tissues and has been safely used in humans in early-phase clinical trials. We tested B7-H3 CAR T cells in a variety of pediatric cancer models.

Results: B7-H3 CAR T cells mediate significant antitumor activity , causing regression of established solid tumors in xenograft models including osteosarcoma, medulloblastoma, and Ewing sarcoma. We demonstrate that B7-H3 CAR T-cell efficacy is largely dependent upon high surface target antigen density on tumor tissues and that activity is greatly diminished against target cells that express low levels of antigen, thus providing a possible therapeutic window despite low-level normal tissue expression of B7-H3.

Conclusions: B7-H3 CAR T cells could represent an exciting therapeutic option for patients with certain lethal relapsed or refractory pediatric malignancies, and should be tested in carefully designed clinical trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-18-0432DOI Listing
April 2019

Development of MGD007, a gpA33 x CD3-Bispecific DART Protein for T-Cell Immunotherapy of Metastatic Colorectal Cancer.

Mol Cancer Ther 2018 08 4;17(8):1761-1772. Epub 2018 Jun 4.

MacroGenics, Rockville, Maryland.

We have developed MGD007 (anti-glycoprotein A33 x anti-CD3), a DART protein designed to redirect T cells to target gpA33 expressing colon cancer. The gpA33 target was selected on the basis of an antibody-based screen to identify cancer antigens universally expressed in both primary and metastatic colorectal cancer specimens, including putative cancer stem cell populations. MGD007 displays the anticipated-bispecific binding properties and mediates potent lysis of gpA33-positive cancer cell lines, including models of colorectal cancer stem cells, through recruitment of T cells. Xenograft studies showed tumor growth inhibition at doses as low as 4 μg/kg. Both CD8 and CD4 T cells mediated lysis of gpA33-expressing tumor cells, with activity accompanied by increases in granzyme and perforin. Notably, suppressive T-cell populations could also be leveraged to mediate lysis of gpA33-expressing tumor cells. Concomitant with CTL activity, both T-cell activation and expansion are observed in a gpA33-dependent manner. No cytokine activation was observed with human PBMC alone, consistent with the absence of gpA33 expression on peripheral blood cell populations. Following prolonged exposure to MGD007 and gpA33 positive tumor cells, T cells express PD-1 and LAG-3 and acquire a memory phenotype but retain ability to support potent cell killing. In cynomolgus monkeys, 4 weekly doses of 100 μg/kg were well tolerated, with prolonged PK consistent with that of an Fc-containing molecule. Taken together, MGD007 displays potent activity against colorectal cancer cells consistent with a mechanism of action endowed in its design and support further investigation of MGD007 as a potential novel therapeutic treatment for colorectal cancer. .
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-17-1086DOI Listing
August 2018

Tailoring CD19xCD3-DART exposure enhances T-cells to eradication of B-cell neoplasms.

Oncoimmunology 2018;7(4):e1341032. Epub 2018 Feb 8.

Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy.

Many patients with B-cell malignancies can be successfully treated, although tumor eradication is rarely achieved. T-cell-directed killing of tumor cells using engineered T-cells or bispecific antibodies is a promising approach for the treatment of hematologic malignancies. We investigated the efficacy of CD19xCD3 DART bispecific antibody in a broad panel of human primary B-cell malignancies. The CD19xCD3 DART identified 2 distinct subsets of patients, in which the neoplastic lymphocytes were eliminated with rapid or slow kinetics. Delayed responses were always overcome by a prolonged or repeated DART exposure. Both CD4 and CD8 effector cytotoxic cells were generated, and DART-mediated killing of CD4 cells into cytotoxic effectors required the presence of CD8 cells. Serial exposures to DART led to the exponential expansion of CD4 and CD8 cells and to the sequential ablation of neoplastic cells in absence of a PD-L1-mediated exhaustion. Lastly, patient-derived neoplastic B-cells (B-Acute Lymphoblast Leukemia and Diffuse Large B Cell Lymphoma) could be proficiently eradicated in a xenograft mouse model by DART-armed cytokine induced killer (CIK) cells. Collectively, patient tailored DART exposures can result in the effective elimination of CD19 positive leukemia and B-cell lymphoma and the association of bispecific antibodies with unmatched CIK cells represents an effective modality for the treatment of CD19 positive leukemia/lymphoma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/2162402X.2017.1341032DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889202PMC
February 2018

MGD011, A CD19 x CD3 Dual-Affinity Retargeting Bi-specific Molecule Incorporating Extended Circulating Half-life for the Treatment of B-Cell Malignancies.

Clin Cancer Res 2017 Mar 23;23(6):1506-1518. Epub 2016 Sep 23.

Research, MacroGenics, Inc., Rockville, Maryland.

CD19, a B-cell lineage-specific marker, is highly represented in B-cell malignancies and an attractive target for therapeutic interventions. MGD011 is a CD19 x CD3 DART bispecific protein designed to redirect T lymphocytes to eliminate CD19-expressing cells. MGD011 has been engineered with a modified human Fc domain for improved pharmacokinetic (PK) properties and designed to cross-react with the corresponding antigens in cynomolgus monkeys. Here, we report on the preclinical activity, safety and PK properties of MGD011. The activity of MGD011 was evaluated in several and models. PK, safety and pharmacodynamic activity was also assessed in dose-escalation and repeat-dose studies of MGD011 administered once weekly in cynomolgus monkeys. MGD011 mediated killing of human B-cell lymphoma lines by human or cynomolgus monkey PBMCs as well as autologous B-cell depletion in PBMCs from both species. MGD011-mediated killing was accompanied by target-dependent T-cell activation and expansion, cytokine release and upregulation of perforin and granzyme B. MGD011 demonstrated antitumor activity against localized and disseminated lymphoma xenografts reconstituted with human PBMCs. In cynomolgus monkeys, MGD011 displayed a terminal half-life of 6.7 days; once weekly intravenous infusion of MGD011 at doses up to 100 μg/kg, the highest dose tested, was well tolerated and resulted in dose-dependent, durable decreases in circulating B cells accompanied by profound reductions of B lymphocytes in lymphoid organs. The preclinical activity, safety and PK profile support clinical investigation of MGD011 as a therapeutic candidate for the treatment of B-cell malignancies. .
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-16-0666DOI Listing
March 2017

Development of PF-06671008, a Highly Potent Anti-P-cadherin/Anti-CD3 Bispecific DART Molecule with Extended Half-Life for the Treatment of Cancer.

Antibodies (Basel) 2016 Mar 4;5(1). Epub 2016 Mar 4.

Global Biotherapeutics Technologies, Pfizer Inc., 610 Main St., Cambridge, MA 02139, USA.

Bispecific antibodies offer a promising approach for the treatment of cancer but can be challenging to engineer and manufacture. Here we report the development of PF-06671008, an extended-half-life dual-affinity re-targeting (DART) bispecific molecule against P-cadherin and CD3 that demonstrates antibody-like properties. Using phage display, we identified anti-P-cadherin single chain Fv (scFv) that were subsequently affinity-optimized to picomolar affinity using stringent phage selection strategies, resulting in low picomolar potency in cytotoxic T lymphocyte (CTL) killing assays in the DART format. The crystal structure of this disulfide-constrained diabody shows that it forms a novel compact structure with the two antigen binding sites separated from each other by approximately 30 Å and facing approximately 90° apart. We show here that introduction of the human Fc domain in PF-06671008 has produced a molecule with an extended half-life (-4.4 days in human FcRn knock-in mice), high stability (T1 > 68 °C), high expression (>1 g/L), and robust purification properties (highly pure heterodimer), all with minimal impact on potency. Finally, we demonstrate anti-tumor efficacy in a human colorectal/human peripheral blood mononuclear cell (PBMC) co-mix xenograft mouse model. These results suggest PF-06671008 is a promising new bispecific for the treatment of patients with solid tumors expressing P-cadherin.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/antib5010006DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698862PMC
March 2016

Targeting CD123 in acute myeloid leukemia using a T-cell-directed dual-affinity retargeting platform.

Blood 2016 Jan 3;127(1):122-31. Epub 2015 Nov 3.

Division of Oncology, Department of Medicine, and.

T-cell-directed killing of tumor cells using bispecific antibodies is a promising approach for the treatment of hematologic malignancies. Here we describe our preclinical work with a dual-affinity retargeting (DART) molecule generated from antibodies to CD3 and CD123, designed to redirect T cells against acute myeloid leukemia blasts. The CD3×CD123 DART (also referred to as MGD006/S80880) consists of 2 independent polypeptides, each composed of the VH of 1 antibody in tandem with the VL of the other antibody. The target antigen CD123 (interleukin 3RA) is highly and differentially expressed in acute myeloid leukemia (AML) blasts compared with normal hematopoietic stem and progenitor cells. In this study we demonstrate that the CD3×CD123 DART binds to both human CD3 and CD123 to mediate target-effector cell association, T-cell activation, proliferation, and receptor diversification. The CD3×CD123 DART also induces a dose-dependent killing of AML cell lines and primary AML blasts in vitro and in vivo. These results provide the basis for testing the CD3×CD123 DART in the treatment of patients with CD123(+) AML.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2014-05-575704DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705603PMC
January 2016

A CD3xCD123 bispecific DART for redirecting host T cells to myelogenous leukemia: preclinical activity and safety in nonhuman primates.

Sci Transl Med 2015 May;7(289):289ra82

MacroGenics Inc., 9640 Medical Center Drive, Rockville, MD 20850, USA.

Current therapies for acute myeloid leukemia (AML) are largely ineffective, and AML patients may benefit from targeted immunotherapy approaches. MGD006 is a bispecific CD3xCD123 dual-affinity re-targeting (DART) molecule that binds T lymphocytes and cells expressing CD123, an antigen up-regulated in several hematological malignancies including AML. MGD006 mediates blast killing in AML samples, together with concomitant activation and expansion of residual T cells. MGD006 is designed to be rapidly cleared, and therefore requires continuous delivery. In a mouse model of continuous administration, MGD006 eliminated engrafted KG-1a cells (an AML-M0 line) in human PBMC (peripheral blood mononuclear cell)-reconstituted NSG/β2m(-/-) mice at doses as low as 0.5 μg/kg per day for ~7 days. MGD006 binds to human and cynomolgus monkey antigens with similar affinities and redirects T cells from either species to kill CD123-expressing target cells. MGD006 was well tolerated in monkeys continuously infused with 0.1 μg/kg per day escalated weekly to up to 1 μg/kg per day during a 4-week period. Depletion of circulating CD123-positive cells was observed as early as 72 hours after treatment initiation and persisted throughout the infusion period. Cytokine release, observed after the first infusion, was reduced after subsequent administrations, even when the dose was escalated. T cells from animals with prolonged in vivo exposure exhibited unperturbed target cell lysis ex vivo, indicating no exhaustion. A transient decrease in red cell mass was observed, with no neutropenia or thrombocytopenia. These studies support clinical testing of MGD006 in hematological malignancies, including AML.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.aaa5693DOI Listing
May 2015

Isolation of cancer stem like cells from human adenosquamous carcinoma of the lung supports a monoclonal origin from a multipotential tissue stem cell.

PLoS One 2013 4;8(12):e79456. Epub 2013 Dec 4.

MacroGenics, Inc., South San Francisco, California, United States of America.

There is increasing evidence that many solid tumors are hierarchically organized with the bulk tumor cells having limited replication potential, but are sustained by a stem-like cell that perpetuates the tumor. These cancer stem cells have been hypothesized to originate from transformation of adult tissue stem cells, or through re-acquisition of stem-like properties by progenitor cells. Adenosquamous carcinoma (ASC) is an aggressive type of lung cancer that contains a mixture of cells with squamous (cytokeratin 5+) and adenocarcinoma (cytokeratin 7+) phenotypes. The origin of these mixtures is unclear as squamous carcinomas are thought to arise from basal cells in the upper respiratory tract while adenocarcinomas are believed to form from stem cells in the bronchial alveolar junction. We have isolated and characterized cancer stem-like populations from ASC through application of selective defined culture medium initially used to grow human lung stem cells. Homogeneous cells selected from ASC tumor specimens were stably expanded in vitro. Primary xenografts and metastatic lesions derived from these cells in NSG mice fully recapitulate both the adenocarcinoma and squamous features of the patient tumor. Interestingly, while the CSLC all co-expressed cytokeratins 5 and 7, most xenograft cells expressed either one, or neither, with <10% remaining double positive. We also demonstrated the potential of the CSLC to differentiate to multi-lineage structures with branching lung morphology expressing bronchial, alveolar and neuroendocrine markers in vitro. Taken together the properties of these ASC-derived CSLC suggests that ASC may arise from a primitive lung stem cell distinct from the bronchial-alveolar or basal stem cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0079456PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3850920PMC
September 2014

Teplizumab preserves C-peptide in recent-onset type 1 diabetes: two-year results from the randomized, placebo-controlled Protégé trial.

Diabetes 2013 Nov 25;62(11):3901-8. Epub 2013 Jun 25.

Pacific Northwest Diabetes Research Institute, Seattle, Washington.

Protégé was a phase 3, randomized, double-blind, parallel, placebo-controlled 2-year study of three intravenous teplizumab dosing regimens, administered daily for 14 days at baseline and again after 26 weeks, in new-onset type 1 diabetes. We sought to determine efficacy and safety of teplizumab immunotherapy at 2 years and to identify characteristics associated with therapeutic response. Of 516 randomized patients, 513 were treated, and 462 completed 2 years of follow-up. Teplizumab (14-day full-dose) reduced the loss of C-peptide mean area under the curve (AUC), a prespecified secondary end point, at 2 years versus placebo. In analyses of prespecified and post hoc subsets at entry, U.S. residents, patients with C-peptide mean AUC >0.2 nmol/L, those randomized ≤6 weeks after diagnosis, HbA1c <7.5% (58 mmol/mol), insulin use <0.4 units/kg/day, and 8-17 years of age each had greater teplizumab-associated C-peptide preservation than their counterparts. Exogenous insulin needs tended to be reduced versus placebo. Antidrug antibodies developed in some patients, without apparent change in drug efficacy. No new safety or tolerability issues were observed during year 2. In summary, anti-CD3 therapy reduced C-peptide loss 2 years after diagnosis using a tolerable dose.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db13-0236DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3806608PMC
November 2013

C-reactive protein causes insulin resistance in mice through Fcγ receptor IIB-mediated inhibition of skeletal muscle glucose delivery.

Diabetes 2013 Mar 15;62(3):721-31. Epub 2012 Oct 15.

Division of Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.

Elevations in C-reactive protein (CRP) are associated with an increased risk of insulin resistance. Whether CRP plays a causal role is unknown. Here we show that CRP transgenic mice and wild-type mice administered recombinant CRP are insulin resistant. Mice lacking the inhibitory Fcγ receptor IIB (FcγRIIB) are protected from CRP-induced insulin resistance, and immunohistochemistry reveals that FcγRIIB is expressed in skeletal muscle microvascular endothelium and is absent in skeletal muscle myocytes, adipocytes, and hepatocytes. The primary mechanism in glucose homeostasis disrupted by CRP is skeletal muscle glucose delivery, and CRP attenuates insulin-induced skeletal muscle blood flow. CRP does not impair skeletal muscle glucose delivery in FcγRIIB(-/-) mice or in endothelial nitric oxide synthase knock-in mice with phosphomimetic modification of Ser1176, which is normally phosphorylated by insulin signaling to stimulate nitric oxide-mediated skeletal muscle blood flow and glucose delivery and is dephosphorylated by CRP/FcγRIIB. Thus, CRP causes insulin resistance in mice through FcγRIIB-mediated inhibition of skeletal muscle glucose delivery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db12-0133DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581204PMC
March 2013

Development of an Fc-enhanced anti-B7-H3 monoclonal antibody with potent antitumor activity.

Clin Cancer Res 2012 Jul 21;18(14):3834-45. Epub 2012 May 21.

MacroGenics, Inc., South San Francisco, CA, USA.

Purpose: The goal of this research was to harness a monoclonal antibody (mAb) discovery platform to identify cell-surface antigens highly expressed on cancer and develop, through Fc optimization, potent mAb therapies toward these tumor-specific antigens.

Experimental Design: Fifty independent mAbs targeting the cell-surface immunoregulatory B7-H3 protein were obtained through independent intact cell-based immunizations using human tissue progenitor cells, cancer cell lines, or cell lines displaying cancer stem cell properties. Binding studies revealed this natively reactive B7-H3 mAb panel to bind a range of independent B7-H3 epitopes. Immunohistochemical analyses showed that a subset displayed strong reactivity to a broad range of human cancers while exhibiting limited binding to normal human tissues. A B7-H3 mAb displaying exquisite tumor/normal differential binding was selected for humanization and incorporation of an Fc domain modified to enhance effector-mediated antitumor function via increased affinity for the activating receptor CD16A and decreased binding to the inhibitory receptor CD32B.

Results: MGA271, the resulting engineered anti-B7-H3 mAb, mediates potent antibody-dependent cellular cytotoxicity against a broad range of tumor cell types. Furthermore, in human CD16A-bearing transgenic mice, MGA271 exhibited potent antitumor activity in B7-H3-expressing xenograft models of renal cell and bladder carcinoma. Toxicology studies carried out in cynomolgus monkeys revealed no significant test article-related safety findings.

Conclusions: This data supports evaluation of MGA271 clinical utility in B7-H3-expressing cancer, while validating a combination of a nontarget biased approach of intact cell immunizations and immunohistochemistry to identify novel cancer antigens with Fc-based mAb engineering to enable potent antitumor activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-12-0715DOI Listing
July 2012

Anti-tumor activity and toxicokinetics analysis of MGAH22, an anti-HER2 monoclonal antibody with enhanced Fcγ receptor binding properties.

Breast Cancer Res 2011 30;13(6):R123. Epub 2011 Nov 30.

MacroGenics, Inc., 9640 Medical Center Drive, Rockville, MD 20850, USA.

Introduction: Response to trastuzumab in metastatic breast cancer correlates with expression of the high binding variant (158V) of the activating Fcγ receptor IIIA (CD16A). We engineered MGAH22, a chimeric anti-HER2 monoclonal antibody with specificity and affinity similar to trastuzumab, with an Fc domain engineered for increased binding to both alleles of human CD16A.

Methods: MGAH22 was compared to an identical anti-HER2 mAb except for a wild type Fc domain. Antibody-dependent cell cytotoxicity (ADCC) assays were performed with HER2-expressing cancer cells as targets and human PBMC or purified NK cells as effectors. Xenograft studies were conducted in mice with wild type murine FcγRs; in mice lacking murine CD16; or in mice lacking murine CD16 but transgenic for human CD16A-158F, the low-binding variant. The latter model reproduces the differential binding between wild type and the Fc-optimized mAb for human CD16A. The JIMT-1 human breast tumor line, derived from a patient that progressed on trastuzumab therapy, was used in these studies. Single and repeat dose toxicology studies with MGAH22 administered intravenously at high dose were conducted in cynomolgus monkeys.

Results: The optimized Fc domain confers enhanced ADCC against all HER2-positive tumor cells tested, including cells resistant to trastuzumab's anti-proliferative activity or expressing low HER2 levels. The greatest improvement occurs with effector cells isolated from donors homozygous or heterozygous for CD16A-158F, the low-binding allele. MGAH22 demonstrates increased activity against HER2-expressing tumors in mice transgenic for human CD16A-158F. In single and repeat-dose toxicology studies in cynomolgus monkeys, a species with a HER2 expression pattern comparable to that in humans and Fcγ receptors that exhibit enhanced binding to the optimized Fc domain, MGAH22 was well tolerated at all doses tested (15-150 mg/kg) and exhibited pharmacokinetic parameters similar to that of other anti-HER2 antibodies. Induction of cytokine release by MGAH22 in vivo or in vitro was similar to that induced by the corresponding wild type mAb or trastuzumab.

Conclusions: The data support the clinical development of MGAH22, which may have utility in patients with low HER2 expressing tumors or carrying the CD16A low-binding allele.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/bcr3069DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3326565PMC
June 2012

Nonclinical evaluation of GMA161--an antihuman CD16 (FcγRIII) monoclonal antibody for treatment of autoimmune disorders in CD16 transgenic mice.

Toxicol Sci 2012 Jan 24;125(1):299-309. Epub 2011 Oct 24.

Biologics Research and Development, Genzyme Corporation, Framingham, Massachusetts 01701-9322, USA.

Fc receptors are a critical component of the innate immune system responsible for the recognition of cross-linked antibodies and the subsequent clearance of pathogens. However, in autoimmune diseases, these receptors play a role in the deleterious action of self-directed antibodies and as such are candidate targets for treatment. GMA161 is an aglycosyl, humanized version of the murine antibody 3G8 that targets the human low-affinity Fcγ receptor III (CD16). As CD16 expression and sequence have high species specificity, preclinical assessments were conducted in mice transgenic for both isoforms of human CD16, CD16A, and CD16B. This transgenic mouse model was useful in transitioning into phase I clinical trials, as it generated positive efficacy data in a relevant disease model and an acceptable single-dose safety profile. However, when GMA161 or its murine parent 3G8 were dosed repeatedly in transgenic mice having both human CD16 isoforms, severe reactions were observed that were not associated with significant cytokine release, nor were they alleviated by antihistamine administration. Prophylactic dosing with an inhibitor of platelet-activating factor (PAF), however, completely eliminated all signs of hypersensitivity. These findings suggest that (1) GMA161 elicits a reaction that is target dependent, (2) immunogenicity and similar adverse reactions were observed with a murine version of the antibody, and (3) the reaction is driven by the atypical hypersensitivity pathway mediated by PAF.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfr278DOI Listing
January 2012

Teplizumab for treatment of type 1 diabetes (Protégé study): 1-year results from a randomised, placebo-controlled trial.

Lancet 2011 Aug 28;378(9790):487-97. Epub 2011 Jun 28.

Massachusetts General Hospital, Boston, MA 02114, USA.

Background: Findings of small studies have suggested that short treatments with anti-CD3 monoclonal antibodies that are mutated to reduce Fc receptor binding preserve β-cell function and decrease insulin needs in patients with recent-onset type 1 diabetes. In this phase 3 trial, we assessed the safety and efficacy of one such antibody, teplizumab.

Methods: In this 2-year trial, patients aged 8-35 years who had been diagnosed with type 1 diabetes for 12 weeks or fewer were enrolled and treated at 83 clinical centres in North America, Europe, Israel, and India. Participants were allocated (2:1:1:1 ratio) by an interactive telephone system, according to computer-generated block randomisation, to receive one of three regimens of teplizumab infusions (14-day full dose, 14-day low dose, or 6-day full dose) or placebo at baseline and at 26 weeks. The Protégé study is still underway, and patients and study staff remain masked through to study closure. The primary composite outcome was the percentage of patients with insulin use of less than 0·5 U/kg per day and glycated haemoglobin A(1c) (HbA(1C)) of less than 6·5% at 1 year. Analyses included all patients who received at least one dose of study drug. This trial is registered with ClinicalTrials.gov, number NCT00385697.

Findings: 763 patients were screened, of whom 516 were randomised to receive 14-day full-dose teplizumab (n=209), 14-day low-dose teplizumab (n=102), 6-day full-dose teplizumab (n=106), or placebo (n=99). Two patients in the 14-day full-dose group and one patient in the placebo group did not start treatment, so 513 patients were eligible for efficacy analyses. The primary outcome did not differ between groups at 1 year: 19·8% (41/207) in the 14-day full-dose group; 13·7% (14/102) in the 14-day low-dose group; 20·8% (22/106) in the 6-day full-dose group; and 20·4% (20/98) in the placebo group. 5% (19/415) of patients in the teplizumab groups were not taking insulin at 1 year, compared with no patients in the placebo group at 1 year (p=0·03). Across the four study groups, similar proportions of patients had adverse events (414/417 [99%] in the teplizumab groups vs 98/99 [99%] in the placebo group) and serious adverse events (42/417 [10%] vs 9/99 [9%]). The most common clinical adverse event in the teplizumab groups was rash (220/417 [53%] vs 20/99 [20%] in the placebo group).

Interpretation: Findings of exploratory analyses suggest that future studies of immunotherapeutic intervention with teplizumab might have increased success in prevention of a decline in β-cell function (measured by C-peptide) and provision of glycaemic control at reduced doses of insulin if they target patients early after diagnosis of diabetes and children.

Funding: MacroGenics, the Juvenile Diabetes Research Foundation, and Eli Lilly.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0140-6736(11)60931-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3191495PMC
August 2011

Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma.

Blood 2011 Apr 7;117(17):4542-51. Epub 2011 Feb 7.

MacroGenics Inc, Rockville, MD, USA.

We describe the application of a novel, bispecific antibody platform termed dual affinity retargeting (DART) to eradicate B-cell lymphoma through coengagement of the B cell-specific antigen CD19 and the TCR/CD3 complex on effector T cells. Comparison with a single-chain, bispecific antibody bearing identical CD19 and CD3 antibody Fv sequences revealed DART molecules to be more potent in directing B-cell lysis. The enhanced activity with the CD19xCD3 DART molecules was observed on all CD19-expressing target B cells evaluated using resting and prestimulated human PBMCs or purified effector T-cell populations. Characterization of a CD19xTCR bispecific DART molecule revealed equivalent potency with the CD19xCD3 DART molecule, demonstrating flexibility of the DART structure to support T-cell/B-cell associations for redirected T cell-killing applications. The enhanced level of killing mediated by DART molecules was not accompanied by any increase in nonspecific T-cell activation or lysis of CD19(-) cells. Cell-association studies indicated that the DART architecture is well suited for maintaining cell-to-cell contact, apparently contributing to the high level of target cell killing. Finally, the ability of the CD19xTCR DART to inhibit B-cell lymphoma in NOD/SCID mice when coadministered with human PBMCs supports further evaluation of DART molecules for the treatment of B-cell malignancies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2010-09-306449DOI Listing
April 2011

Therapeutic control of B cell activation via recruitment of Fcgamma receptor IIb (CD32B) inhibitory function with a novel bispecific antibody scaffold.

Arthritis Rheum 2010 Jul;62(7):1933-43

MacroGenics, Inc., Rockville, Maryland 20850, USA.

Objective: To exploit the physiologic Fcgamma receptor IIb (CD32B) inhibitory coupling mechanism to control B cell activation by constructing a novel bispecific diabody scaffold, termed a dual-affinity retargeting (DART) molecule, for therapeutic applications.

Methods: DART molecules were constructed by pairing an Fv region from a monoclonal antibody (mAb) directed against CD32B with an Fv region from a mAb directed against CD79B, the beta-chain of the invariant signal-transducing dimer of the B cell receptor complex. DART molecules were characterized physicochemically and for their ability to simultaneously bind the target receptors in vitro and in intact cells. The ability of the DART molecules to negatively control B cell activation was determined by calcium mobilization, by tyrosine phosphorylation of signaling molecules, and by proliferation and Ig secretion assays. A DART molecule specific for the mouse ortholog of CD32B and CD79B was also constructed and tested for its ability to inhibit B cell proliferation in vitro and to control disease severity in a collagen-induced arthritis (CIA) model.

Results: DART molecules were able to specifically bind and coligate their target molecules on the surface of B cells and demonstrated a preferential simultaneous binding to both receptors on the same cell. DART molecules triggered the CD32B-mediated inhibitory signaling pathway in activated B cells, which translated into inhibition of B cell proliferation and Ig secretion. A DART molecule directed against the mouse orthologs was effective in inhibiting the development of CIA in DBA/1 mice.

Conclusion: This innovative bispecific antibody scaffold that simultaneously engages activating and inhibitory receptors enables novel therapeutic approaches for the treatment of rheumatoid arthritis and potentially other autoimmune and inflammatory diseases in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/art.27477DOI Listing
July 2010

Effector cell recruitment with novel Fv-based dual-affinity re-targeting protein leads to potent tumor cytolysis and in vivo B-cell depletion.

J Mol Biol 2010 Jun 9;399(3):436-49. Epub 2010 Apr 9.

MacroGenics, Inc., 1500 East Gude Drive, Rockville, MD 20850, USA.

Bispecific antibodies capable of redirecting the lytic potential of immune effector cells to kill tumor targets have long been recognized as a potentially potent biological therapeutic intervention. Unfortunately, efforts to produce such molecules have been limited owing to inefficient production and poor stability properties. Here, we describe a novel Fv-derived strategy based on a covalently linked bispecific diabody structure that we term dual-affinity re-targeting (DART). As a model system, we linked an Fv specific for human CD16 (FcgammaRIII) on effector cells to an Fv specific for mouse or human CD32B (FcgammaRIIB), a normal B-cell and tumor target antigen. DART proteins were produced at high levels in mammalian cells, retained the binding activity of the respective parental Fv domains as well as bispecific binding, and showed extended storage and serum stability. Functionally, the DART molecules demonstrated extremely potent, dose-dependent cytotoxicity in retargeting human PBMC against B-lymphoma cell lines as well as in mediating autologous B-cell depletion in culture. In vivo studies in mice demonstrated effective B-cell depletion that was dependent on the transgenic expression of both CD16A on the effector cells and CD32B on the B-cell targets. Furthermore, DART proteins showed potent in vivo protective activity in a human Burkitt's lymphoma cell xenograft model. Thus, DART represents a biologically potent format that provides a versatile platform for generating bispecific antibody fragments for redirected killing and, with the selection of appropriate binding partners, applications outside of tumor cell cytotoxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2010.04.001DOI Listing
June 2010

IgG antibodies produced during subcutaneous allergen immunotherapy mediate inhibition of basophil activation via a mechanism involving both FcgammaRIIA and FcgammaRIIB.

Immunol Lett 2010 May 30;130(1-2):57-65. Epub 2009 Dec 30.

Division of Allergy & Immunology, National Jewish Health, Denver, USA.

The majority of human subjects who receive subcutaneous allergen immunotherapy (IT) develop decreased sensitivity to their allergens. Multiple factors may explain the efficacy of IT, some evidence support a role for allergen specific IgG antibodies. There is controversy whether such antibodies act by blocking allergen binding to IgE or initiation of active inhibitory signaling through low affinity IgG receptors (FcgammaRIIB) on mast cells and basophils. In this study, we addressed this question using peripheral blood from cat non-allergic, cat allergic, and immunotherapy-treated cat allergic subjects. Blood from subjects who received IT contain IgG antibodies that mediate inhibition of basophil activation by a mechanism that is blocked by antibodies specific for the inhibitory IgG receptor FcgammaRIIB. Surprisingly, inhibition was also blocked by aglycosylated, putatively non-FcR binding, antibodies that are specific for the FcgammaRIIA, suggesting a contribution of this receptor to the observed effect. Consistent with a cooperative effect, ex vivo basophils were found to express both IgG receptors. In other studies we found that basophils from subjects who were both chronically exposed to allergen and were producing both cat allergen specific IgE and IgG, are hyporesponsive to allergen. These studies confirm that IgG antibodies produced during IT act primarily by stimulation of inhibitory signaling, and suggest that FcgammaRIIA and FcgammaRIIB function cooperatively in activation of inhibitory signaling circuit. We suggest that under normal physiologic conditions in which only a small proportion of FcepsilonRI are occupied by IgE of a single allergen specificity, FcgammaRIIA co-aggregation may, by providing activated Lyn, be required to fuel activation of inhibitory FcgammaRIIB function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.imlet.2009.12.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849848PMC
May 2010

The inhibitory Fc gamma IIb receptor dampens TLR4-mediated immune responses and is selectively up-regulated on dendritic cells from rheumatoid arthritis patients with quiescent disease.

J Immunol 2009 Oct 4;183(7):4509-20. Epub 2009 Sep 4.

Department of Rheumatology, Nijmegen Centre of Molecular Life Sciences and Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, Nijmegen 6500 HB, The Netherlands.

Rheumatoid arthritis (RA) is a common autoimmune disease leading to profound disability and premature death. Although a role for FcgammaRs and TLRs is accepted, their precise involvement remains to be elucidated. FcgammaRIIb is an inhibitory FcR important in the maintenance of tolerance. We hypothesized that the inhibitory FcgammaRIIb inhibits TLR responses on monocyte-derived dendritic cells (DC) and serves as a counterregulatory mechanism to dampen inflammation, and we surmised that this mechanism might be defective in RA. The expression of the inhibitory FcgammaRIIb was found to be significantly higher on DCs from RA patients having low RA disease activity in the absence of treatment with antirheumatic drugs. The expression of activating FcgammaRs was similarly distributed among all RA patients and healthy controls. Intriguingly, only DCs with a high expression of FcgammaRIIb were able to inhibit TLR4-mediated secretion of proinflammatory cytokines when stimulated with immune complexes. In addition, when these DCs were coincubated with the combination of a TLR4 agonist and immune complexes, a markedly inhibited T cell proliferation was apparent, regulatory T cell development was promoted, and T cells were primed to produce high levels of IL-13 compared with stimulation of the DCs with the TLR4 agonist alone. Blocking FcgammaRIIb with specific Abs fully abrogated these effects demonstrating the full dependence on the inhibitory FcgammaRIIb in the induction of these phenomena. This TLR4-FcgammaRIIb interaction was shown to dependent on the PI3K and Akt pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.0900153DOI Listing
October 2009

C-reactive protein inhibits insulin activation of endothelial nitric oxide synthase via the immunoreceptor tyrosine-based inhibition motif of FcgammaRIIB and SHIP-1.

Circ Res 2009 Jun 7;104(11):1275-82. Epub 2009 May 7.

Division of Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

Insulin promotes the cardiovascular protective functions of the endothelium including NO production by endothelial NO synthase (eNOS), which it stimulates via Akt kinase which phosphorylates eNOS Ser1179. C-reactive protein (CRP) is an acute-phase reactant that is positively correlated with cardiovascular disease risk in patients with type 2 diabetes. We previously showed that CRP inhibits eNOS activation by insulin by blunting Ser1179 phosphorylation. We now elucidate the underlying molecular mechanisms. We first show in mice that CRP inhibits insulin-induced eNOS phosphorylation, indicating that these processes are operative in vivo. In endothelial cells we find that CRP attenuates insulin-induced Akt phosphorylation, and CRP antagonism of eNOS is negated by expression of constitutively active Akt; the inhibitory effect of CRP on Akt is also observed in vivo. A requirement for the IgG receptor FcgammaRIIB was demonstrated in vitro using blocking antibody, and reconstitution experiments with wild-type and mutant FcgammaRIIB in NIH3T3IR cells revealed that these processes require the ITIM (immunoreceptor tyrosine-based inhibition motif) of the receptor. Furthermore, we find that endothelium express SHIP-1 (Src homology 2 domain-containing inositol 5'-phosphatase 1), that CRP induces SHIP-1 stimulatory phosphorylation in endothelium in culture and in vivo, and that SHIP-1 knockdown by small interfering RNA prevents CRP antagonism of insulin-induced eNOS activation. Thus, CRP inhibits eNOS stimulation by insulin via FcgammaRIIB and its ITIM, SHIP-1 activation, and resulting blunted activation of Akt. These findings provide mechanistic linkage among CRP, impaired insulin signaling in endothelium, and greater cardiovascular disease risk in type 2 diabetes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.108.192906DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2733870PMC
June 2009

CD32B is highly expressed on clonal plasma cells from patients with systemic light-chain amyloidosis and provides a target for monoclonal antibody-based therapy.

Blood 2008 Apr 23;111(7):3403-6. Epub 2008 Jan 23.

Sloan-Kettering Institute, Department of Medicine, New York, NY 10021, USA.

Despite advances in therapy, many patients with systemic light-chain amyloidosis (AL) die within 3 years from diagnosis. The humanized 2B6 monoclonal antibody (MoAb) is specific for the low-affinity IgG Fc receptor CD32B and effective in a human CD32B+ B-cell lymphoma murine xenograft model. Because MoAb therapy could improve outcomes in AL, we studied CD32B expression by clonal plasma cells obtained from 48 patients with AL. Transcript profiling showed that expression of CD32B was significantly higher than expression of all other Fc receptor family members. Reverse-transcriptase polymerase chain reaction (RT-PCR) using double-enriched CD138+ plasma cells showed uniform expression of the stable cell surface CD32B1 isoform at diagnosis and relapse, and flow cytometry showed intense CD32B cell surface staining on 99% of CD138+ plasma cells at diagnosis and relapse. These data provide a rationale for the novel therapeutic targeting of CD32B using the humanized 2B6 MoAb in patients with systemic AL-amyloidosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2007-11-125526DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2275009PMC
April 2008

Fc optimization of therapeutic antibodies enhances their ability to kill tumor cells in vitro and controls tumor expansion in vivo via low-affinity activating Fcgamma receptors.

Cancer Res 2007 Sep;67(18):8882-90

MacroGenics, Inc., Rockville, Maryland 20850, USA.

Monoclonal antibodies (mAb) are widely used in the treatment of non-Hodgkin's lymphoma and autoimmune diseases. Although the mechanism of action in vivo is not always known, the therapeutic activity of several approved mAbs depends on the binding of the Fcgamma regions to low-affinity Fcgamma receptors (FcgammaR) expressed on effector cells. We did functional genetic screens to identify IgG1 Fc domains with improved binding to the low-affinity activating Fc receptor CD16A (FcgammaRIIIA) and reduced binding to the low-affinity inhibitory Fc receptor, CD32B (FcgammaRIIB). Identification of new amino acid residues important for FcgammaR binding guided the construction of an Fc domain that showed a dramatically enhanced CD16A binding and greater than a 100-fold improvement in antibody-dependent cell-mediated cytotoxicity. In a xenograft murine model of B-cell malignancy, the greatest enhancement of an Fc-optimized anti-human B-cell mAb was accounted for by improved binding to FcgammaRIV, a unique mouse activating FcgammaR that is expressed by monocytes and macrophages but not natural killer (NK) cells, consistent with experimental and clinical data suggesting that mononuclear phagocytes, effector cells expressing both activating and inhibitory FcgammaR, are critical mediators of B-cell depletion in vivo. By using mice transgenic for human CD16A, enhanced survival was observed due to expression of CD16A-158(phe) on monocytes and macrophages as well as on NK cells in these mice. The design of new generations of improved antibodies for immunotherapy should aim at Fc optimization to increase the engagement of activating FcgammaR present on the surface of tumor-infiltrating effector cell populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-07-0696DOI Listing
September 2007

Monoclonal antibodies capable of discriminating the human inhibitory Fcgamma-receptor IIB (CD32B) from the activating Fcgamma-receptor IIA (CD32A): biochemical, biological and functional characterization.

Immunology 2007 Jul 26;121(3):392-404. Epub 2007 Mar 26.

MacroGenics Inc., Rockville, MD 20850, USA.

Human CD32B (FcgammaRIIB), the low-affinity inhibitory Fcgamma receptor (FcgammaR), is highly homologous in its extracellular domain to CD32A (FcgammaRIIA), an activating FcgammaR. Available monoclonal antibodies (mAb) against the extracellular region of CD32B recognize both receptors. Through immunization of mice transgenic for human CD32A, we generated a set of antibodies specific for the extracellular region of CD32B with no cross-reactivity with CD32A, as determined by enzyme-linked immunosorbent assay and surface plasmon resonance with recombinant CD32A and CD32B, and by fluorescence-activated cell sorting analysis of CD32 transfectants. A high-affinity mAb, 2B6, was used to explore the expression of CD32B by human peripheral blood leucocytes. While all B lymphocytes expressed CD32B, only a fraction of monocytes and almost no polymorphonuclear cells stained with 2B6. Likewise, natural killer cells, which express CD32C, a third CD32 variant, did not react with 2B6. Immune complexes co-engage the inhibitory receptor with activating Fcgamma receptors, a mechanism that limits cell responses. 2B6 competed for immune complex binding to CD32B as a monomeric Fab, suggesting that it directly recognizes the Fc-binding region of the receptor. Furthermore, when co-ligated with an activating receptor, 2B6 triggered CD32B-mediated inhibitory signalling, resulting in diminished release of inflammatory mediators by FcepsilonRI in an in vitro allergy model or decreased proliferation of human B cells induced by B-cell receptor stimulation. These antibodies form the basis for the development of investigational tools and therapeutics with multiple potential applications, ranging from adjuvants in FcgammaR-mediated responses to the treatment of allergy and autoimmunity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2567.2007.02588.xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2265948PMC
July 2007

The functional variant of the inhibitory Fcgamma receptor IIb (CD32B) is associated with the rate of radiologic joint damage and dendritic cell function in rheumatoid arthritis.

Arthritis Rheum 2006 Dec;54(12):3828-37

Department of Rheumatology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.

Objective: Fcgamma receptors (FcgammaRs) recognize immune complexes (ICs) and coordinate the immune response by modulating the functions of dendritic cells (DCs). The purpose of this study was to unravel the role of the inhibitory FcgammaRIIb in rheumatoid arthritis (RA) by studying the effect of the FCGR2B 695T>C polymorphism on susceptibility to RA, severity of the disease, and DC function.

Methods: Genotyping was performed in RA patients (n = 246) and healthy blood donors (n = 269). The patients' demographic data, disease severity, and disease progression were assessed over a followup of 6 years. DCs were cultured for flow cytometry to determine the expression of FcgammaRs. For detection of FcgammaRIIb (CD32B), a unique anti-FcgammaRIIb antibody (2B6-fluorescein isothiocyanate [FITC]) was used. The capacity for antigen uptake by DCs was studied by assessing the uptake of FITC-labeled ICs. Levels of cytokine production by DCs were measured during lipopolysaccharide-mediated cell activation in the presence and absence of ICs.

Results: Although no role of the FCGR2B variant in RA susceptibility was demonstrated, this variant was associated with a nearly doubled rate of radiologic joint damage during the first 6 years of RA. Multiple regression analysis showed that FCGR2B was by far the strongest predictor of joint damage identified to date. DCs from patients carrying this variant failed to display the inhibitory phenotype normally observed upon IC-mediated triggering of inflammation and displayed diminished FcgammaRII-mediated antigen uptake compared with wild-type DCs. However, the levels of FcgammaRs were not affected, suggesting that the FCGR2B variant alters the function rather than regulation of proteins.

Conclusion: This study is the first to show that a single genetic variant, the FCGR2B 695T>C polymorphism, is a critical determinant of disease severity in RA and radically changes DC behavior. Our results underscore the key role of DCs in the progression of RA and reveal FcgammaRIIb as an important potential therapeutic target in RA and other autoimmune conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/art.22275DOI Listing
December 2006