Publications by authors named "Ezhuthupurakkal Preedia Babu"

4 Publications

  • Page 1 of 1

Synthesis and characterisation of arsenic nanoparticles and its interaction with DNA and cytotoxic potential on breast cancer cells.

Chem Biol Interact 2018 Nov 22;295:73-83. Epub 2017 Dec 22.

Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India. Electronic address:

Therapeutic applications of arsenic trioxide (ATO) are limited due to their severe adverse effects. However, nanoparticles of ATO might possess inimitable biologic effects based on their structure and size which differ from their parent molecules. Based on this conception, AsNPs were synthesized from ATO and comparatively analysed for their interaction mechanism with DNA using spectroscopic & electrochemical techniques. Finally, anti-proliferative activity was assessed against different breast cancer cells (MDA-MB-231 & MCF-7) and normal non-cancerous cells (HEK-293). The DNA interaction study revealed that AsNPs and ATO exhibit binding constant values in the order of 10 which indicates strong binding interaction. Binding of AsNPs did not disturb the structural integrity of DNA, on the other hand an opposing effect was observed with ATO through biophysical techniques. Further, in vitro study, confirms cytotoxicity of ATO and AsNPs against different cells, however at particular concentration ATO exhibits more cytotoxicity than that of AsNPs. Furthermore, cytotoxicity was confirmed through acridine orange and comet assay. In conclusion, AsNPs are safer than ATO with comparable efficacy and might be a suitable candidate for the development of novel therapeutic agent against breast cancer and other solid tumours.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2017.12.025DOI Listing
November 2018

Anticancer potential of ZnO nanoparticle-ferulic acid conjugate on Huh-7 and HepG2 cells and diethyl nitrosamine induced hepatocellular cancer on Wistar albino rat.

Nanomedicine 2018 02 21;14(2):415-428. Epub 2017 Nov 21.

Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India. Electronic address:

Drawbacks and limitations of recently available therapies to hepatocellular cancer (HCC) devoted the scientist to focus on emerging new strategies. ZnO nanoparticles (ZnONPs) based chemotherapeutics has been emanating as a promising approach to maximize therapeutic synergy facilitating the discovery of novel multitargeted combinations. In the present study we conjugated ZnONPs with ferulic acid (ZnONPs-FAC) characterized by computational, spectroscopic and microscopic techniques. In vitro anticancer potential has been evaluated by assessing cell viability, morphology, ROS generation, mitochondrial membrane permeability, comet assay, immunofluorescent staining of 8-OHdG, Ki67 and γ-H2AX, cell cycle analysis and western blot analysis and in vivo anticancer potential against DEN induced HCC was analyzed by histopathological and immunohistochemical methods. The results revealed that ZnONPs-FAC induces cell death through apoptosis and can suppress the DEN-induced HCC. Our study documents therapeutic potential of nanoparticle conjugated with phytochemicals, suggesting a new platform for combinatorial chemotherapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2017.11.003DOI Listing
February 2018

Troxerutin with copper generates oxidative stress in cancer cells: Its possible chemotherapeutic mechanism against hepatocellular carcinoma.

J Cell Physiol 2018 Mar 3;233(3):1775-1790. Epub 2017 Aug 3.

Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India.

Troxerutin (TXER) a rutin derivative is known for its anticancer effect against hepatocellular carcinoma (HCC). As part of large study, recently we have shown TXER interact with genetic material and its anti-mutagenic property. In the present study we have explored its possible mode of action in HCC. Since TXER alone did not show significant anticancer effect on Huh-7 cells, in vitro biochemical assays were performed for determining anticancer efficacy of TXER + metal complex using transition metals such as Cu, Zn, and Fe. The anticancer efficacy of TXER + Cu on Huh-7 cells were evaluated using MTT assay, DCFDA, JC-1 staining, comet assay, cell cycle analysis, immunocytochemistry, and Western blotting. Non-toxic nature of TXER was analyzed on primary rat hepatocytes. The in vivo efficacy of TXER was tested in N-nitrosodiethylamine initiated and γ-benzene hexachloride and partial hepatectomy promoted rat liver cancer. Liver markers, transition metal levels, histopathological examination, and expression levels of GST-P, 8-OHdG and Ki-67 were studied to assess the in vivo anticancer effect of TXER. We observed that TXER + Cu induced extensive cellular death on Huh-7 cells through generating free radicals and did not possess any toxic effect on normal hepatocytes. The in vivo studies revealed that TXER possess significant anti-cancer effect as assessed through improved liver markers and suppressed GST-P, 8-OHdG, and Ki-67 expression. TXER treatment reduced the hepatic Cu level in cancer bearing animals. Current study brings the putative mechanism involved in anti-cancer effect of TXER, further it will help to formulate phytoconstituents coupled anti-cancer drug for effective treatment of HCC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.26061DOI Listing
March 2018

Selenium nanoparticles synthesized in aqueous extract of Allium sativum perturbs the structural integrity of Calf thymus DNA through intercalation and groove binding.

Mater Sci Eng C Mater Biol Appl 2017 May 7;74:597-608. Epub 2017 Feb 7.

Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India. Electronic address:

Biomedical application of selenium nanoparticles (SeNPs) demands the eco-friendly composite for synthesis of SeNPs. The present study reports an aqueous extract of Allium sativum (AqEAS) plug-up the current need. Modern spectroscopic, microscopic and gravimetric techniques were employed to characterize the synthesized nanoparticles. Characterization studies revealed the formation of crystalline spherical shaped SeNPs. FTIR spectrum brings out the presence of different functional groups in AqEAS, which influence the SeNPs formation and stabilization. Furthermore the different aspects of the interaction between SeNPs and CT-DNA were scrutinized by various spectroscopic and cyclic voltametric studies. The results reveals the intercalation and groove binding mode of interaction of SeNPs with stacked base pair of CT-DNA. The Stern-Volmer quenching constant (K) were found to be 7.02×10M- (ethidium bromide), 4.22×10 M- (acridine orange) and 7.6×10M- (Hoechst) indicating strong binding of SeNPs with CT-DNA. The SeNPs - CT-DNA interactions were directly visualized by atomic force microscopy. The present study unveils the cost effective, innocuous, highly stable SeNPs intricate mechanism of DNA interaction, which will be a milestone in DNA targeted chemotherapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2017.02.003DOI Listing
May 2017