Publications by authors named "Evelyn Stinckens"

8 Publications

  • Page 1 of 1

Toward an AOP Network-Based Tiered Testing Strategy for the Assessment of Thyroid Hormone Disruption.

Environ Sci Technol 2020 07 9;54(14):8491-8499. Epub 2020 Jul 9.

Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.

A growing number of environmental pollutants are known to adversely affect the thyroid hormone system, and major gaps have been identified in the tools available for the identification, and the hazard and risk assessment of these thyroid hormone disrupting chemicals. We provide an example of how the adverse outcome pathway (AOP) framework and associated data generation can address current testing challenges in the context of fish early life stage tests, and fish tests in general. We demonstrate how a suite of assays covering biological processes involved in the underlying toxicological pathways can be implemented in a tiered screening and testing approach for thyroid hormone disruption, using the levels of assessment of the OECD's Conceptual Framework for the Testing and Assessment of Endocrine Disrupting Chemicals as a guide.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.9b07205DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7477622PMC
July 2020

Effect of Thyroperoxidase and Deiodinase Inhibition on Anterior Swim Bladder Inflation in the Zebrafish.

Environ Sci Technol 2020 05 29;54(10):6213-6223. Epub 2020 Apr 29.

Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.

A set of adverse outcome pathways (AOPs) linking inhibition of thyroperoxidase and deiodinase to impaired swim bladder inflation in fish has recently been developed. These AOPs help to establish links between these thyroid hormone (TH) disrupting molecular events and adverse outcomes relevant to aquatic ecological risk assessment. Until now, very little data on the effects of TH disruption on inflation of the anterior chamber (AC) of the swim bladder were available. The present study used zebrafish exposure experiments with three model compounds with distinct thyroperoxidase and deiodinase inhibition potencies (methimazole, iopanoic acid, and propylthiouracil) to evaluate this linkage. Exposure to all three chemicals decreased whole body triiodothyronine (T3) concentrations, either through inhibition of thyroxine (T4) synthesis or through inhibition of Dio mediated conversion of T4 to T3. A quantitative relationship between reduced T3 and reduced AC inflation was established, a critical key event relationship linking impaired swim bladder inflation to TH disruption. Reduced inflation of the AC was directly linked to reductions in swimming distance compared to controls as well as to chemical-exposed fish whose ACs inflated. Together the data provide compelling support for AOPs linking TH disruption to impaired AC inflation in fish.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.9b07204DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7477623PMC
May 2020

From mRNA Expression of Drug Disposition Genes to In Vivo Assessment of CYP-Mediated Biotransformation during Zebrafish Embryonic and Larval Development.

Int J Mol Sci 2018 Dec 10;19(12). Epub 2018 Dec 10.

Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp, Wilrijk 2610, Antwerp, Belgium.

The zebrafish () embryo is currently explored as an alternative for developmental toxicity testing. As maternal metabolism is lacking in this model, knowledge of the disposition of xenobiotics during zebrafish organogenesis is pivotal in order to correctly interpret the outcome of teratogenicity assays. Therefore, the aim of this study was to assess cytochrome P450 (CYP) activity in zebrafish embryos and larvae until 14 d post-fertilization (dpf) by using a non-specific CYP substrate, i.e., benzyloxy-methyl-resorufin (BOMR) and a CYP1-specific substrate, i.e., 7-ethoxyresorufin (ER). Moreover, the constitutive mRNA expression of , , , , , , , phase II enzymes uridine diphosphate glucuronosyltransferase 1A1 () and sulfotransferase 1st1 (), and an ATP-binding cassette (ABC) drug transporter, i.e., , was assessed during zebrafish development until 32 dpf by means of quantitative PCR (qPCR). The present study showed that trancripts and/or the activity of these proteins involved in disposition of xenobiotics are generally low to undetectable before 72 h post-fertilization (hpf), which has to be taken into account in teratogenicity testing. Full capacity appears to be reached by the end of organogenesis (i.e., 120 hpf), although -except -and were shown to be already mature in early embryonic development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms19123976DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321216PMC
December 2018

Gene transcription ontogeny of hypothalamic-pituitary-thyroid axis development in early-life stage fathead minnow and zebrafish.

Gen Comp Endocrinol 2018 09 4;266:87-100. Epub 2018 May 4.

University of Antwerp, Zebrafishlab, Veterinary Physiology and Biochemistry, Dept. Veterinary Sciences, Universiteitsplein 1, 2610 Wilrijk, Belgium. Electronic address:

The hypothalamic-pituitary-thyroid (HPT) axis is known to play a crucial role in the development of teleost fish. However, knowledge of endogenous transcription profiles of thyroid-related genes in developing teleosts remains fragmented. We selected two model teleost species, the fathead minnow (Pimephales promelas) and the zebrafish (Danio rerio), to compare the gene transcription ontogeny of the HPT axis. Control organisms were sampled at several time points during embryonic and larval development until 33 days post-fertilization. Total RNA was extracted from pooled, whole fish, and thyroid-related mRNA expression was evaluated using quantitative polymerase chain reaction. Gene transcripts examined included: thyrotropin-releasing hormone receptor (trhr), thyroid-stimulating hormone receptor (tshr), sodium-iodide symporter (nis), thyroid peroxidase (tpo), thyroglobulin (tg), transthyretin (ttr), deiodinases 1, 2, 3a, and 3b (dio1, dio2, dio3a and 3b), and thyroid hormone receptors alpha and beta (thrα and β). A loess regression method was successful in identifying maxima and minima of transcriptional expression during early development of both species. Overall, we observed great similarities between the species, including maternal transfer, at least to some extent, of almost all transcripts (confirmed in unfertilized eggs), increasing expression of most transcripts during hatching and embryo-larval transition, and indications of a fully functional HPT axis in larvae. These data will aid in the development of hypotheses on the role of certain genes and pathways during development. Furthermore, this provides a background reference dataset for designing and interpreting targeted transcriptional expression studies both for fundamental research and for applications such as toxicology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygcen.2018.05.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540109PMC
September 2018

An AOP-based alternative testing strategy to predict the impact of thyroid hormone disruption on swim bladder inflation in zebrafish.

Aquat Toxicol 2018 Jul 21;200:1-12. Epub 2018 Apr 21.

Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium. Electronic address:

The adverse outcome pathway (AOP) framework can be used to help support the development of alternative testing strategies aimed at predicting adverse outcomes caused by triggering specific toxicity pathways. In this paper, we present a case-study demonstrating the selection of alternative in chemico assays targeting the molecular initiating events of established AOPs, and evaluate use of the resulting data to predict higher level biological endpoints. Based on two AOPs linking inhibition of the deiodinase (DIO) enzymes to impaired posterior swim bladder inflation in fish, we used in chemico enzyme inhibition assays to measure the molecular initiating events for an array of 51 chemicals. Zebrafish embryos were then exposed to 14 compounds with different measured inhibition potentials. Effects on posterior swim bladder inflation, predicted based on the information captured by the AOPs, were evaluated. By linking the two datasets and setting thresholds, we were able to demonstrate that the in chemico dataset can be used to predict biological effects on posterior chamber inflation, with only two outliers out of the 14 tested compounds. Our results show how information organized using the AOP framework can be employed to develop or select alternative assays, and successfully forecast downstream key events along the AOP. In general, such in chemico assays could serve as a first-tier high-throughput system to screen and prioritize chemicals for subsequent acute and chronic fish testing, potentially reducing the need for long-term and costly toxicity tests requiring large numbers of animals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2018.04.009DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002951PMC
July 2018

Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole part I: Fathead minnow.

Aquat Toxicol 2016 Apr 7;173:192-203. Epub 2016 Jan 7.

U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA.

In the present study, a hypothesized adverse outcome pathway linking inhibition of thyroid peroxidase (TPO) activity to impaired swim bladder inflation was investigated in two experiments in which fathead minnows (Pimephales promelas) were exposed to 2-mercaptobenzothiazole (MBT). Continuous exposure to 1mg MBT/L for up to 22 days had no effect on inflation of the posterior chamber of the swim bladder, which typically inflates around 6 days post fertilization (dpf), a period during which maternally-derived thyroid hormone is presumed to be present. In contrast, inflation of the anterior swim bladder, which occurs around 14dpf, was impacted. Specifically, at 14dpf, approximately 50% of fish exposed to 1mg MBT/L did not have an inflated anterior swim bladder. In fish exposed to MBT through 21 or 22dpf, the anterior swim bladder was able to inflate, but the ratio of the anterior/posterior chamber length was significantly reduced compared to controls. Both abundance of thyroid peroxidase mRNA and thyroid follicle histology suggest that fathead minnows mounted a compensatory response to the presumed inhibition of TPO activity by MBT. Time-course characterization showed that fish exposed to MBT for at least 4 days prior to normal anterior swim bladder inflation had significant reductions in anterior swim bladder size, relative to the posterior chamber, compared to controls. These results, along with similar results observed in zebrafish (see part II, this issue) are consistent with the hypothesis that thyroid hormone signaling plays a significant role in mediating anterior swim bladder inflation and development in cyprinids, and that role can be disrupted by exposure to thyroid hormone synthesis inhibitors. Nonetheless, possible thyroid-independent actions of MBT on anterior swim bladder inflation cannot be ruled out based on the present results. Overall, although anterior swim bladder inflation has not been directly linked to survival as posterior swim bladder inflation has, potential links to adverse ecological outcomes are plausible given involvement of the anterior chamber in sound production and detection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2015.12.024DOI Listing
April 2016

Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole part II: Zebrafish.

Aquat Toxicol 2016 Apr 18;173:204-217. Epub 2016 Jan 18.

Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium. Electronic address:

Disruption of the thyroid hormone (TH) system, an important mode of action, can lead to ecologically relevant adverse outcomes, especially during embryonic development. The present study characterizes the effects of disruption of TH synthesis on swim bladder inflation during zebrafish early-life stages using 2-mercaptobenzothiazole (MBT), a thyroid peroxidase (TPO) inhibitor. Zebrafish were exposed to different MBT concentrations until 120/168h post fertilization (hpf) and 32days post fertilization (dpf), in two sets of experiments, to investigate the effects of TPO inhibition on posterior and anterior swim bladder inflation respectively, as well as whole body thyroid hormone concentrations (triiodothyronine (T3) and its prohormone, thyroxine (T4)). At 120hpf, MBT did not directly impair posterior chamber inflation or size, while anterior chamber inflation and size was impaired at 32dpf. As previously shown in amphibians and mammals, we confirmed that MBT inhibits TPO in fish. Whole-body T4 decreased after MBT exposure at both time points, while T3 levels were unaltered. There was a significant relationship between T4 levels and the anterior chamber surface at 32dpf. The absence of effects on posterior chamber inflation can possibly be explained by maternal transfer of T4 into the eggs. These maternally derived THs are depleted at 32dpf and cannot offset TPO inhibition, resulting in impaired anterior chamber inflation. Therefore, we hypothesize that TPO inhibition only inhibits swim bladder inflation during late development, after depletion of maternally derived T4. In a previous study, we showed that iodothyronine deiodinase (ID) knockdown impaired posterior chamber inflation during early development. Our findings, in parallel with similar effects observed in fathead minnow (see part I, this issue) suggest that thyroid disruption impacts swim bladder inflation, and imply an important distinction among specific subtypes of TH disrupting chemicals. However, the existence of another - yet unknown - mode of action of MBT impacting swim bladder inflation cannot be excluded. These results can be helpful for delineating adverse outcome pathways (AOPs) linking TPO inhibition, ID inhibition and other TH related molecular initiating events, to impaired swim bladder inflation in fish during early life stages. Such AOPs can support the use of in vitro enzyme inhibition assays for predicting reduced survival due to impaired posterior and anterior chamber inflation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2015.12.023DOI Listing
April 2016

A high throughput passive dosing format for the Fish Embryo Acute Toxicity test.

Chemosphere 2015 Nov 27;139:9-17. Epub 2015 May 27.

Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.

High throughput testing according to the Fish Embryo Acute Toxicity (FET) test (OECD Testing Guideline 236) is usually conducted in well plates. In the case of hydrophobic test substances, sorptive and evaporative losses often result in declining and poorly controlled exposure conditions. Therefore, our objective was to improve exposure conditions in FET tests by evaluating a passive dosing format using silicone O-rings in standard 24-well polystyrene plates. We exposed zebrafish embryos to a series of phenanthrene concentrations until 120h post fertilization (hpf), and obtained a linear dilution series. We report effect values for both mortality and sublethal morphological effects based on (1) measured exposure concentrations, (2) (lipid normalized) body residues and (3) chemical activity. The LC50 for 120hpf was 310μg/L, CBR50 (critical body residue) was 2.72mmol/kg fresh wt and La50 (lethal chemical activity) was 0.047. All values were within ranges expected for baseline toxicity. Impaired swim bladder inflation was the most pronounced morphological effect and swimming activity was reduced in all exposure concentrations. Further analysis showed that the effect on swimming activity was not attributed to impaired swim bladder inflation, but rather to baseline toxicity. We conclude that silicone O-rings (1) produce a linear dilution series of phenanthrene in the 120hpf FET test, (2) generate and maintain aqueous concentrations for reliable determination of effect concentrations, and allow for obtaining mechanistic toxicity information, and (3) cause no toxicity, demonstrating its potential as an extension of the FET test when testing hydrophobic chemicals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2015.05.041DOI Listing
November 2015
-->