Publications by authors named "Evan W Warner"

9 Publications

  • Page 1 of 1

Evolution of Castration-Resistant Prostate Cancer in ctDNA during Sequential Androgen Receptor Pathway Inhibition.

Clin Cancer Res 2021 Aug 3;27(16):4610-4623. Epub 2021 Jun 3.

Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada.

Purpose: Cross-resistance renders multiple lines of androgen receptor (AR) signaling inhibitors increasingly futile in metastatic castration-resistant prostate cancer (mCRPC). We sought to determine acquired genomic contributors to cross-resistance.

Experimental Design: We collected 458 serial plasma cell-free DNA samples at baseline and progression timepoints from 202 patients with mCRPC receiving sequential AR signaling inhibitors (abiraterone and enzalutamide) in a randomized phase II clinical trial (NCT02125357). We utilized deep targeted and whole-exome sequencing to compare baseline and posttreatment somatic genomic profiles in circulating tumor DNA (ctDNA).

Results: Patient ctDNA abundance was correlated across plasma collections and independently prognostic for sequential therapy response and overall survival. Most driver alterations in established prostate cancer genes were consistently detected in ctDNA over time. However, shifts in somatic populations after treatment were identified in 53% of patients, particularly after strong treatment responses. Treatment-associated changes converged upon the gene, with an average 50% increase in copy number, changes in mutation frequencies, and a 2.5-fold increase in the proportion of patients carrying AR ligand binding domain truncating rearrangements.

Conclusions: Our data show that the dominant genotype continues to evolve during sequential lines of AR inhibition and drives acquired resistance in patients with mCRPC.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
August 2021

Identification of Hypermutation and Defective Mismatch Repair in ctDNA from Metastatic Prostate Cancer.

Clin Cancer Res 2020 03 19;26(5):1114-1125. Epub 2019 Nov 19.

Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada.

Purpose: DNA mismatch repair defects (MMRd) and tumor hypermutation are rare and under-characterized in metastatic prostate cancer (mPC). Furthermore, because hypermutated MMRd prostate cancers can respond to immune checkpoint inhibitors, there is an urgent need for practical detection tools.

Experimental Design: We analyzed plasma cell-free DNA-targeted sequencing data from 433 patients with mPC with circulating tumor DNA (ctDNA) purity ≥2%. Samples with somatic hypermutation were subjected to 185 × whole-exome sequencing and capture of mismatch repair gene introns. Archival tissue was analyzed with targeted sequencing and IHC.

Results: Sixteen patients (3.7%) had somatic hypermutation with MMRd etiology, evidenced by deleterious alterations in , or , microsatellite instability, and characteristic trinucleotide signatures. ctDNA was concordant with mismatch repair protein IHC and DNA sequencing of tumor tissue. Tumor suppressors such as , and were inactivated by mutation rather than copy-number loss. Hotspot mutations in oncogenes such as , and were common, and the androgen receptor ()-ligand binding domain was mutated in 9 of 16 patients. We observed high intrapatient clonal diversity, evidenced by subclonal driver mutations and shifts in mutation allele frequency over time. Patients with hypermutation and MMRd etiology in ctDNA had a poor response to AR inhibition and inferior survival compared with a control cohort.

Conclusions: Hypermutated MMRd mPC is associated with oncogene activation and subclonal diversity, which may contribute to a clinically aggressive disposition in selected patients. In patients with detectable ctDNA, cell-free DNA sequencing is a practical tool to prioritize this subtype for immunotherapy..
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
March 2020

Circulating Tumor DNA Abundance and Potential Utility in De Novo Metastatic Prostate Cancer.

Eur Urol 2019 04 10;75(4):667-675. Epub 2019 Jan 10.

Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada. Electronic address:

Background: Several systemic therapeutic options exist for metastatic castrate-sensitive prostate cancer (mCSPC). Circulating tumor DNA (ctDNA) can molecularly profile metastatic castration-resistant prostate cancer and can influence decision-making, but remains untested in mCSPC.

Objective: To determine ctDNA abundance at de novo mCSPC diagnosis and whether ctDNA provides complementary clinically relevant information to a prostate biopsy.

Design, Setting, And Participants: We collected plasma cell-free DNA (cfDNA) from 53 patients newly diagnosed with mCSPC and, where possible, during treatment. Targeted sequencing was performed on cfDNA and DNA from diagnostic prostate tissue.

Results And Limitations: The median ctDNA fraction was 11% (range 0-84%) among untreated patients but was lower (1.0%, range 0-51%) among patients after short-term (median 22d) androgen deprivation therapy (ADT). TP53 mutations and DNA repair defects were identified in 47% and 21% of the cohort, respectively. The concordance for mutation detection in matched samples was 80%. Combined ctDNA and tissue analysis identified potential driver alterations in 94% of patients, whereas ctDNA or prostate biopsy alone was insufficient in 19 cases (36%). Limitations include the use of a narrow gene panel and undersampling of primary disease by prostate biopsy.

Conclusions: ctDNA provides additional information to a prostate biopsy in men with de novo mCSPC, but ADT rapidly reduces ctDNA availability. Primary tissue and ctDNA share relevant somatic alterations, suggesting that either is suitable for molecular subtyping in de novo mCSPC. The optimal approach for biomarker development should utilize both a tissue and liquid biopsy at diagnosis, as neither captures clinically relevant somatic alterations in all patients.

Patient Summary: In men with advanced prostate cancer, tumor DNA shed into the bloodstream can be measured via a blood test. The information from this test provides complementary information to a prostate needle biopsy and could be used to guide management strategies. Sequencing data were deposited in the European Genome-phenome Archive (EGA) under study identifier EGAS00001003351.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
April 2019

DNA repair defects in prostate cancer: impact for screening, prognostication and treatment.

BJU Int 2019 05 26;123(5):769-776. Epub 2018 Oct 26.

Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.

Failure of effective DNA damage repair is a hallmark of cancer, but was previously underappreciated as a driver of aggressive prostate cancer. However, recent international sequencing efforts have revealed that both germline and somatic alterations within the homologous recombination and mismatch repair pathways are relatively common in lethal metastatic disease. BRCA2 gene alterations are particularly prevalent and are linked to poor prognosis as well as poor responses to systemic therapy for castration-resistant prostate cancer, although there is conflicting support for the latter. Defective DNA repair contributes to tumour heterogeneity, evolution and progression, but there are high hopes that management of this aggressive subset will be transformed by biomarker-driven use of poly-ADP ribose polymerase (PARP) inhibitors and platinum-based chemotherapy. In this review, we detail the relationship between DNA repair defects and prostate cancer, highlighting the prevalence of mutations in key genes and their controversial association with clinical outcomes.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
May 2019

Circulating Tumor DNA Genomics Correlate with Resistance to Abiraterone and Enzalutamide in Prostate Cancer.

Cancer Discov 2018 04 24;8(4):444-457. Epub 2018 Jan 24.

Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.

Primary resistance to androgen receptor (AR)-directed therapies in metastatic castration-resistant prostate cancer (mCRPC) is poorly understood. We randomized 202 patients with treatment-naïve mCRPC to abiraterone or enzalutamide and performed whole-exome and deep targeted 72-gene sequencing of plasma cell-free DNA prior to therapy. For these agents, which have never been directly compared, time to progression was similar. Defects in and were strongly associated with poor clinical outcomes independently of clinical prognostic factors and circulating tumor DNA abundance. Somatic alterations in , previously linked to reduced tumor dependency on AR signaling, were also independently associated with rapid resistance. Although detection of amplifications did not outperform standard prognostic biomarkers, gene structural rearrangements truncating the ligand binding domain were identified in several patients with primary resistance. These findings establish genomic drivers of resistance to first-line AR-directed therapy in mCRPC and identify potential minimally invasive biomarkers. Leveraging plasma specimens collected in a large randomized phase II trial, we report the relative impact of common circulating tumor DNA alterations on patient response to the most widely used therapies for advanced prostate cancer. Our findings suggest that liquid biopsy analysis can guide the use of AR-targeted therapy in general practice. .
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
April 2018

Impact of Therapy on Genomics and Transcriptomics in High-Risk Prostate Cancer Treated with Neoadjuvant Docetaxel and Androgen Deprivation Therapy.

Clin Cancer Res 2017 Nov 25;23(22):6802-6811. Epub 2017 Aug 25.

Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.

The combination of docetaxel chemotherapy and androgen deprivation therapy (ADT) has become a standard treatment for patients with metastatic prostate cancer. The recently accrued phase III CALGB 90203 trial was designed to investigate the clinical effectiveness of this treatment approach earlier in the disease. Specimens from this trial offer a unique opportunity to interrogate the acute molecular response to docetaxel and ADT and identify potential biomarkers. We evaluated baseline clinical data, needle biopsies, and radical prostatectomy (RP) specimens from 52 (of 788) patients enrolled on CALGB 90203 at one high volume center. Pathology review, tumor and germline-targeted DNA sequencing ( = 72 genes), and expression profiling using NanoString platform ( = 163 genes) were performed to explore changes in critical prostate cancer pathways linked to aggression and resistance. Three of 52 patients had only microfocal residual cancer at prostatectomy. The most common alterations included fusion ( = 32), mutation or deletion ( = 11), deletion ( = 6), ( = 6), and ( = 4) mutation, with no significant enrichment in posttreated specimens. We did not observe amplification or mutations. The degree of AR signaling suppression varied among treated tumors and there was upregulation of both AR and AR-V7 expression as well as a subset of neuroendocrine and plasticity genes. These data support the feasibility of targeted and temporal genomic and transcriptome profiling of neoadjuvant-treated prostate cancer with limited formalin-fixed paraffin embedded tissue requirement. Characterization of the heterogeneity of treatment response and molecular outliers that arise posttreatment provides new insight into potential early markers of resistance. .
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
November 2017

Treatment Outcomes and Tumor Loss of Heterozygosity in Germline DNA Repair-deficient Prostate Cancer.

Eur Urol 2017 07 1;72(1):34-42. Epub 2017 Mar 1.

Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada. Electronic address:

Background: Germline mutations in DNA repair genes were recently reported in 8-12% of patients with metastatic castration-resistant prostate cancer (mCRPC). It is unknown whether these mutations associate with differential response to androgen receptor (AR)-directed therapy.

Objective: To determine the clinical response of mCRPC patients with germline DNA repair defects to AR-directed therapies and to establish whether biallelic DNA repair gene loss is detectable in matched circulating tumor DNA (ctDNA).

Design, Setting, And Participants: We recruited 319 mCRPC patients and performed targeted germline sequencing of 22 DNA repair genes. In patients with deleterious germline mutations, plasma cell-free DNA was also sequenced.

Outcome Measurements And Statistical Analysis: Prostate-specific antigen response and progression were assessed in relation to initial androgen deprivation therapy (ADT) and subsequent therapy for mCRPC using Kaplan-Meier analysis.

Results And Limitations: Of the 319 patients, 24 (7.5%) had deleterious germline mutations, with BRCA2 (n=16) being the most frequent. Patients (n=22) with mutations in genes linked to homologous recombination were heterogeneous at initial presentation but, after starting ADT, progressed to mCRPC with a median time of 11.8 mo (95% confidence interval [CI] 5.1-18.4). The median time to prostate-specific antigen progression on first-line AR-targeted therapy in the mCRPC setting was 3.3 mo (95% CI 2.7-3.9). Ten out of 11 evaluable patients with germline BRCA2 mutations had somatic deletion of the intact allele in ctDNA. A limitation of this study is absence of a formal control cohort for comparison of clinical outcomes.

Conclusions: Patients with mCRPC who have germline DNA repair defects exhibit attenuated responses to AR-targeted therapy. Biallelic gene loss was robustly detected in ctDNA, suggesting that this patient subset could be prioritized for therapies exploiting defective DNA repair using a liquid biopsy.

Patient Summary: Patients with metastatic prostate cancer and germline DNA repair defects exhibit a poor response to standard hormonal therapies, but may be prioritized for potentially more effective therapies using a blood test.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
July 2017

Genomic Alterations in Cell-Free DNA and Enzalutamide Resistance in Castration-Resistant Prostate Cancer.

JAMA Oncol 2016 Dec;2(12):1598-1606

Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada2Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.

Importance: The molecular landscape underpinning response to the androgen receptor (AR) antagonist enzalutamide in patients with metastatic castration-resistant prostate cancer (mCRPC) is undefined. Consequently, there is an urgent need for practical biomarkers to guide therapy selection and elucidate resistance. Although tissue biopsies are impractical to perform routinely in the majority of patients with mCRPC, the analysis of plasma cell-free DNA (cfDNA) has recently emerged as a minimally invasive method to explore tumor characteristics.

Objective: To reveal genomic characteristics from cfDNA associated with clinical outcomes during enzalutamide treatment.

Design, Setting, And Participants: Plasma samples were obtained from August 4, 2013, to July 31, 2015, at a single academic institution (British Columbia Cancer Agency) from 65 patients with mCRPC. We collected temporal plasma samples (at baseline, 12 weeks, end of treatment) for circulating cfDNA and performed array comparative genomic hybridization copy number profiling and deep AR gene sequencing. Samples collected at end of treatment were also subjected to targeted sequencing of 19 prostate cancer-associated genes.

Exposure: Enzalutamide, 160 mg, daily orally.

Main Outcomes And Measures: Prostate-specific antigen response rate (decline ≥50% from baseline confirmed ≥3 weeks later). Radiographic (as per Prostate Cancer Working Group 2 Criteria) and/or clinical progression (defined as worsening disease-related symptoms necessitating a change in anticancer therapy and/or deterioration in Eastern Cooperative Group performance status ≥2 levels).

Results: The 65 patients had a median (interquartile range) age of 74 (68-79) years. Prostate-specific antigen response rate to enzalutamide treatment was 38% (25 of 65), while median clinical/radiographic progression-free survival was 3.5 (95% CI, 2.1-5.0) months. Cell-free DNA was isolated from 122 of 125 plasma samples, and targeted sequencing was successful in 119 of 122. AR mutations and/or copy number alterations were robustly detected in 48% (31 of 65) and 60% (18 of 30) of baseline and progression samples, respectively. Detection of AR amplification, heavily mutated AR (≥2 mutations), and RB1 loss were associated with worse progression-free survival, with hazard ratios of 2.92 (95% CI, 1.59-5.37), 3.94 (95% CI, 1.46-10.64), and 4.46 (95% CI, 2.28-8.74), respectively. AR mutations exhibited clonal selection during treatment, including an increase in glucocorticoid-sensitive AR L702H and promiscuous AR T878A in patients with prior abiraterone treatment. At the time of progression, cfDNA sequencing revealed mutations or copy number changes in all patients tested, including clinically actionable alterations in DNA damage repair genes and PI3K pathway genes, and a high frequency (4 of 14) of activating CTNNB1 mutations.

Conclusions And Relevance: Clinically informative genomic profiling of cfDNA was feasible in nearly all patients with mCRPC and can provide important insights into enzalutamide response and resistance.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
December 2016

Moving Toward Personalized Care: Liquid Biopsy Predicts Response to Cisplatin in an Unusual Case of BRCA2-Null Neuroendocrine Prostate Cancer.

Clin Genitourin Cancer 2016 Apr 24;14(2):e233-6. Epub 2015 Dec 24.

Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada. Electronic address:

View Article and Find Full Text PDF

Download full-text PDF

Source Listing
April 2016