Publications by authors named "Espérance Ouedraogo"

13 Publications

  • Page 1 of 1

Anti-malarial efficacy and resistance monitoring of artemether-lumefantrine and dihydroartemisinin-piperaquine shows inadequate efficacy in children in Burkina Faso, 2017-2018.

Malar J 2021 Jan 19;20(1):48. Epub 2021 Jan 19.

IRSS / Unité de Recherche Clinique de Nanoro, Nanoro, Burkina Faso.

Background: The World Health Organization recommends regularly assessing the efficacy of artemisinin-based combination therapy (ACT), which is a critical tool in the fight against malaria. This study evaluated the efficacy of two artemisinin-based combinations recommended to treat uncomplicated Plasmodium falciparum malaria in Burkina Faso in three sites: Niangoloko, Nanoro, and Gourcy.

Methods: This was a two-arm randomized control trial of the efficacy of artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP). Children aged 6-59 months old were monitored for 42 days. The primary outcomes of the study were uncorrected and PCR-corrected efficacies to day 28 for AL and 42 for DP. Molecular markers of resistance to artemisinin derivatives and partner drugs were also analysed.

Results: Of 720 children enrolled, 672 reached study endpoints at day 28, 333 in the AL arm and 339 in the DP arm. PCR-corrected 28-day per protocol efficacy in the AL arm was 74% (64-83%) in Nanoro, 76% (66-83%) in Gourcy, and 92% (84-96%) in Niangoloko. The PCR-corrected 42-day per protocol efficacy in the DP arm was 84% (75-89%) in Gourcy, 89% (81-94%) in Nanoro, and 97% (92-99%) in Niangoloko. No Pfk13 mutation previously associated with artemisinin-resistance was observed. No statistically significant association was found between treatment outcome and presence of the 86Y mutation in the Pfmdr1 gene. There was also no association observed between treatment outcome and Pfpm2 or Pfmdr1 copy number variation.

Conclusion: The results of this study indicate evidence of inadequate efficacy of AL at day 28 and DP at day 42 in the same two sites. A change of first-line ACT may be warranted in Burkina Faso. Trial Registry Pan African Clinical Trial Registry Identifier: PACTR201708002499311. Date of registration: 8/3/2017 https://pactr.samrc.ac.za/Search.aspx.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12936-021-03585-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816451PMC
January 2021

An epidemiological study to assess Plasmodium falciparum parasite prevalence and malaria control measures in Burkina Faso and Senegal.

Malar J 2017 02 6;16(1):63. Epub 2017 Feb 6.

GSK Vaccines, Wavre, Belgium.

Background: Malariometric information is needed to decide how to introduce malaria vaccines and evaluate their impact in sub-Saharan African countries.

Methods: This cross-sectional study (NCT01954264) was conducted between October and November, 2013, corresponding to the high malaria transmission season, in four sites with Health and Demographic Surveillance Systems (DSS) [two sites with moderate-to-high malaria endemicity in Burkina Faso (Nouna and Saponé) and two sites with low malaria endemicity in Senegal (Keur Socé and Niakhar)]. Children (N = 2421) were randomly selected from the DSS lists of the study sites and were stratified into two age groups (6 months-4 years and 5-9 years). A blood sample was collected from each child to evaluate parasite prevalence of Plasmodium falciparum and other Plasmodium species and gametocyte density by microscopy, and rapid diagnosis test in the event of fever within 24 h. Case report forms were used to evaluate malaria control measures and other factors.

Results: Plasmodium falciparum was identified in 707 (29.2%) children, with a higher prevalence in Burkina Faso than Senegal (57.5 vs 0.9% of children). In Burkina Faso, prevalence was 57.7% in Nouna and 41.9% in Saponé in the 6 months-4 years age group, and 75.4% in Nouna and 70.1% in Saponé in the 5-9 years age group. Infections with other Plasmodium species were rare and only detected in Burkina Faso. While mosquito nets were used by 88.6-97.0 and 64.7-80.2% of children in Burkina Faso and Senegal, other malaria control measures evaluated at individual level were uncommon. In Burkina Faso, exploratory analyses suggested that use of malaria treatment or any other medication within 14 days, and use of insecticide spray within 7 days decreased the prevalence of malaria infection; older age, rural residence, natural floor, grass/palm roof, and unavailability of electricity in the house were factors associated with increased malaria occurrence.

Conclusions: Plasmodium falciparum infection prevalence in children younger than 10 years was 57.5% in Burkina Faso and 0.9% in Senegal, and variability was observed, among others, by age, study site and malaria control measures.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12936-017-1715-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5294715PMC
February 2017

Malaria incidence in children in South-West Burkina Faso: comparison of active and passive case detection methods.

PLoS One 2014 24;9(1):e86936. Epub 2014 Jan 24.

Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso.

Background: The aim of this study was to determine the incidence and seasonal pattern of malaria in children in South-West Burkina Faso, and to compare, in a randomized trial, characteristics of cases detected by active and passive surveillance. This study also enabled the planning of a malaria vaccine trial.

Methods: Households with young children, located within 5 kilometers of a health facility, were randomized to one of two malaria surveillance methods. In the first group, children were monitored actively. Each child was visited twice weekly; tympanic temperature was measured, and if the child had a fever or history of fever, a malaria rapid diagnostic test was performed and a blood smear collected. In the second group, children were monitored passively. The child's parent or caregiver was asked to bring the child to the nearest clinic if he was unwell. Follow up lasted 13 months from September 2009.

Results: Incidence of malaria (Fever with parasitaemia ≥5,000/µL) was 1.18 episodes/child/year in the active cohort and 0.89 in the passive cohort (rate ratio 1.32, 95% CI 1.13-1.54). Malaria cases in the passive cohort were more likely to have high grade fever; but parasite densities were similar in the two groups. Incidence was highly seasonal; when a specific case definition was used, about 60% of cases occurred within the 4 months June-September.

Conclusion: Passive case detection required at least a 30%-40% increase in the sample size for vaccine trials, compared to active detection, to achieve the same power. However we did not find any evidence that parasite densities were higher with passive than with active detection. The incidence of malaria is highly seasonal and meets the WHO criteria for Seasonal Malaria Chemoprevention (SMC). At least half of the malaria cases in these children could potentially be prevented if SMC was effectively deployed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0086936PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901722PMC
February 2015

A phase 1b randomized, controlled, double-blinded dosage-escalation trial to evaluate the safety, reactogenicity and immunogenicity of an adenovirus type 35 based circumsporozoite malaria vaccine in Burkinabe healthy adults 18 to 45 years of age.

PLoS One 2013 11;8(11):e78679. Epub 2013 Nov 11.

Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso.

Background: Ad35.CS.01 is a pre-erythrocytic malaria candidate vaccine. It is a codon optimized nucleotide sequence representing the P. falciparum circumsporozoite (CS) surface antigen inserted in a replication deficient Adenovirus 35 backbone. A Phase 1a trial has been conducted in the USA in naïve adults and showed that the vaccine was safe. The aim of this study is to assess the safety and immunogenicity of ascending dosages in sub Saharan Africa.

Methods: A double blind, randomized, controlled, dose escalation, phase Ib trial was conducted in a rural area of Balonghin, the Saponé health district (Burkina Faso). Forty-eight healthy adults aged 18-45 years were randomized into 4 cohorts of 12 to receive three vaccine doses (day 0, 28 and 84) of 10(9), 10(10), 5X10(10), 10(11) vp of Ad35.CS.01 or normal saline by intra muscular injection. Subjects were monitored carefully during the 14 days following each vaccination for non serious adverse events. Severe and serious adverse events were collected throughout the participant study duration (12 months from the first vaccination). Humoral and cellular immune responses were measured on study days 0, 28, 56, 84, 112 and 140.

Results: Of the forty-eight subjects enrolled, forty-four (91.7%) received all three scheduled vaccine doses. Local reactions, all of mild severity, occurred in thirteen (27.1%) subjects. Severe (grade 3) laboratory abnormalities occurred in five (10.4%) subjects. One serious adverse event was reported and attributed to infection judged unrelated to vaccine. The vaccine induced both antibody titers and CD8 T cells producing IFNγ and TNFα with specificity to CS while eliciting modest neutralizing antibody responses against Ad35.

Conclusion: Study vaccine Ad35.CS.01 at four different dose levels was well-tolerated and modestly immunogenic in this population. These results suggest that Ad35.CS.01 should be further investigated for preliminary efficacy in human challenge models and as part of heterologous prime-boost vaccination strategies.

Trial Registration: ClinicalTrials.gov NCT01018459 http://clinicaltrials.gov/ct2/show/NCT01018459.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078679PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823848PMC
July 2014

Variation in haematological parameters in children less than five years of age with asymptomatic Plasmodium infection: implication for malaria field studies.

Mem Inst Oswaldo Cruz 2013 Aug;108(5):644-50

Centre National de Recherche et de Formation sur le Paludisme, Kadiogo, Ouagadougou, Burkina Faso.

During the season of high malaria transmission, most children are infected by Plasmodium, which targets red blood cells (RBCs), affecting haematological parameters. To describe these variations, we examined the haematological profiles of two groups of children living in a malaria-endemic area. A cross-sectional survey was conducted at the peak of the malaria transmission season in a rural area of Burkina Faso. After informed consent and clinical examination, blood samples were obtained from the participants for malaria diagnosis and a full blood count. Of the 414 children included in the analysis, 192 were not infected with Plasmodium, whereas 222 were asymptomatic carriers of Plasmodium infection. The mean age of the infected children was 41.8 months (range of 26.4-57.2) compared to 38.8 months (range of 22.4-55.2) for the control group (p = 0.06). The asymptomatic infected children tended to have a significantly lower mean haemoglobin level (10.8 g/dL vs. 10.4 g/dL; p < 0.001), mean lymphocyte count (4592/µL vs. 5141/µL; p = 0.004), mean platelet count (266 x 10³/µL vs. 385 x 10³/µL; p < 0.001) and mean RBC count (4.388 x 10(6)/µL vs. 4.158 x 10(6)/µL; p < 0.001) and a higher mean monocyte count (1403/µL vs. 1192/µL; p < 0.001) compared to the control group. Special attention should be applied when interpreting haematological parameters and evaluating immune responses in asymptomatic infected children living in malaria-endemic areas and enrolled in vaccine trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970598PMC
http://dx.doi.org/10.1590/0074-0276108052013017DOI Listing
August 2013

Malaria morbidity in high and seasonal malaria transmission area of Burkina Faso.

PLoS One 2013 8;8(1):e50036. Epub 2013 Jan 8.

Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso.

Background: Malariometric parameters are often primary endpoints of efficacy trials of malaria vaccine candidates. This study aims to describe the epidemiology of malaria prior to the conduct of a series of drug and vaccine trials in a rural area of Burkina Faso.

Methods: Malaria incidence was prospectively evaluated over one year follow-up among two cohorts of children aged 0-5 years living in the Saponé health district. The parents of 1089 children comprising a passive case detection cohort were encouraged to seek care from the local health clinic at any time their child felt sick. Among this cohort, 555 children were randomly selected for inclusion in an active surveillance sub-cohort evaluated for clinical malaria during twice weekly home visits. Malaria prevalence was evaluated by cross-sectional survey during the low and high transmission seasons.

Results: Number of episodes per child ranged from 0 to 6 per year. Cumulative incidence was 67.4% in the passive and 86.2% in the active cohort and was highest among children 0-1 years. Clinical malaria prevalence was 9.8% in the low and 13.0% in the high season (p>0.05). Median days to first malaria episode ranged from 187 (95% CI 180-193) among children 0-1 years to 228 (95% CI 212, 242) among children 4-5 years. The alternative parasite thresholds for the malaria case definition that achieved optimal sensitivity and specificity (70-80%) were 3150 parasites/µl in the high and 1350 parasites/µl in the low season.

Conclusion: Clinical malaria burden was highest among the youngest age group children, who may represent the most appropriate target population for malaria vaccine candidate development. The pyrogenic threshold of parasitaemia varied markedly by season, suggesting a value for alternative parasitaemia levels in the malaria case defintion. Regional epidemiology of malaria described, Sapone area field centers are positioned for future conduct of malaria vaccine trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0050036PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540059PMC
August 2013

Seasonal performance of a malaria rapid diagnosis test at community health clinics in a malaria-hyperendemic region of Burkina Faso.

Parasit Vectors 2012 May 30;5:103. Epub 2012 May 30.

Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso.

Background: Treatment of confirmed malaria patients with Artemisinin-based Combination Therapy (ACT) at remote areas is the goal of many anti-malaria programs. Introduction of effective and affordable malaria Rapid Diagnosis Test (RDT) in remote areas could be an alternative tool for malaria case management. This study aimed to assess performance of the OptiMAL dipstick for rapid malaria diagnosis in children under five.

Methods: Malaria symptomatic and asymptomatic children were recruited in a passive manner in two community clinics (CCs). Malaria diagnosis by microscopy and RDT were performed. Performance of the tests was determined.

Results: RDT showed similar ability (61.2%) to accurately diagnose malaria as microscopy (61.1%). OptiMAL showed a high level of sensitivity and specificity, compared with microscopy, during both transmission seasons (high & low), with a sensitivity of 92.9% vs. 74.9% and a specificity of 77.2% vs. 87.5%.

Conclusion: By improving the performance of the test through accurate and continuous quality control of the device in the field, OptiMAL could be suitable for use at CCs for the management and control of malaria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1756-3305-5-103DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3461428PMC
May 2012

Haemoglobin variants and Plasmodium falciparum malaria in children under five years of age living in a high and seasonal malaria transmission area of Burkina Faso.

Malar J 2012 May 4;11:154. Epub 2012 May 4.

Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso.

Background: Genetic factors play a key role in determining resistance/susceptibility to infectious disease. Susceptibility of the human host to malaria infection has been reported to be influenced by genetic factors, which could be confounders if not taken into account in the assessment of the efficacy of interventions against malaria. This study aimed to assess the relationship between haemoglobin genotypes and malaria in children under five years in a site being characterized for future malaria vaccine trials.

Methods: The study population consisted of 452 children living in four rural villages. Hb genotype was determined at enrolment. Clinical malaria incidence was evaluated over a one-year period using combined active and passive surveillance. Prevalence of infection was evaluated via bi-annual cross-sectional surveys. At each follow-up visit, children received a brief clinical examination and thick and thin blood films were prepared for malaria diagnosis. A clinical malaria was defined as Plasmodium falciparum parasitaemia >2,500 parasites/μl and axillary temperature ≥37.5°C or reported fever over the previous 24 hours.

Results: Frequencies of Hb genotypes were 73.2% AA; 15.0% AC; 8.2% AS; 2.2% CC; 1.1% CS and 0.2% SS. Prevalence of infection at enrolment ranged from 61.9%-54.1% among AA, AC and AS children. After one year follow-up, clinical malaria incidence (95% CI) (episodes per person-year) was 1.9 (1.7-2.0) in AA, 1.6 (1.4-2.1) in AC, and 1.7 (1.4-2.0) in AS children. AC genotype was associated with lower incidence of clinical malaria relative to AA genotype among children aged 1-2 years [rate ratio (95% CI) 0.66 (0.42-1.05)] and 2-3 years [rate ratio (95% CI) 0.37 (0.18-0.75)]; an association of opposite direction was however apparent among children aged 3-4 years. AS genotype was associated with lower incidence of clinical malaria relative to AA genotype among children aged 2-3 years [rate ratio (95% CI) 0.63 (0.40-1.01)].

Conclusions: In this cohort of children, AC or AS genotype was associated with lower risk of clinical malaria relative to AA genotype only among children aged one to three years. It would be advisable for clinical studies of malaria in endemic regions to consider haemoglobin gene differences as a potentially important confounder, particularly among younger children.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1475-2875-11-154DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3544150PMC
May 2012

Haematological parameters, natural regulatory CD4 + CD25 + FOXP3+ T cells and γδ T cells among two sympatric ethnic groups having different susceptibility to malaria in Burkina Faso.

BMC Res Notes 2012 Jan 27;5:76. Epub 2012 Jan 27.

Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso.

Background: Fulani ethnic group individuals are less susceptible than sympatric Mossi ethnic group, in term of malaria infection severity, and differ in antibody production against malaria antigens. The differences in susceptibility to malaria between Fulani and Mossi ethnic groups are thought to be regulated by different genetic backgrounds and offer the opportunity to compare haematological parameters, Tregs and γδT cell profiles in seasonal and stable malaria transmission settings in Burkina Faso. The study was conducted at two different time points i.e. during the high and low malaria transmission period.

Results: Two cross-sectional surveys were undertaken in adults above 20 years belonging either to the Fulani or the Mossi ethnic groups 1) at the peak of the malaria transmission season and 2) during the middle of the low malaria transmission season. Full blood counts, proportions of Tregs and γδ T cells were measured at both time-points.As previously shown the Fulani and Mossi ethnic groups showed a consistent difference in P. falciparum infection rates and parasite load. Differential white blood cell counts showed that the absolute lymphocyte counts were higher in the Mossi than in the Fulani ethnic group at both time points. While the proportion of CD4+CD25high was higher in the Fulani ethnic group at the peak of malaria transmission season (p = 0.03), no clear pattern emerged for T regulatory cells expressing FoxP3+ and CD127low. However CD3+γδ+ subpopulations were found to be higher in the Fulani compared to the Mossi ethnic group, and this difference was statistically significant at both time-points (p = 0.004 at low transmission season and p = 0.04 at peak of transmission).

Conclusion: Our findings on regulatory T cell phenotypes suggest an interesting role for immune regulatory mechanisms in response to malaria. The study also suggests that TCRγδ + cells might contribute to the protection against malaria in the Fulani ethnic group involving their reported parasite inhibitory activities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1756-0500-5-76DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292809PMC
January 2012

Morbidity from malaria in children in the year after they had received intermittent preventive treatment of malaria: a randomised trial.

PLoS One 2011 12;6(8):e23391. Epub 2011 Aug 12.

Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso.

Background: Interventions that reduce exposure to malaria infection may lead to delayed malaria morbidity and mortality. We investigated whether intermittent preventive treatment of malaria in children (IPTc) was associated with an increase in the incidence of malaria after cessation of the intervention.

Methods: An individually randomised, trial of IPTc, comparing three courses of sulphadoxine pyrimethamine (SP) plus amodiaquine (AQ) with placebos was implemented in children aged 3-59 months during the 2008 malaria transmission season in Burkina Faso. All children in the trial were given a long lasting insecticide treated net; 1509 children received SP+AQ and 1505 received placebos. Passive surveillance for malaria was maintained until the end of the subsequent malaria transmission season in 2009, and active surveillance for malaria infection, anaemia and malnutrition was conducted.

Results: On thousand, four hundred and sixteen children (93.8%) and 1399 children (93.0%) initially enrolled in the intervention and control arms of the trial respectively were followed during the 2009 malaria transmission season. During the period July 2009 to November 2009, incidence rates of clinical malaria were 3.84 (95%CI; 3.67-4.02) and 3.45 (95%CI; 3.29-3.62) episodes per child during the follow up period in children who had previously received IPT or placebos, indicating a small increase in risk for children in the former intervention arm (IRR = 1.12; 95%CI 1.04-1.20) (P = 0.003). Children who had received SP+AQ had a lower prevalence of malaria infection (adjusted PR: 0.88 95%CI: 0.79-0.98) (P = 0.04) but they had a higher parasite density (P = 0.001) if they were infected. There was no evidence that the risks of moderately severe anaemia (Hb<8 g/dL), wasting, stunting, or of being underweight in children differed between treatment arms.

Conclusion: IPT with SP+AQ was associated with a small increase in the incidence of clinical malaria in the subsequent malaria transmission season.

Trial Registration: ClinicalTrials.gov NCT00738946.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0023391PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155539PMC
February 2012

Intermittent preventive treatment of malaria provides substantial protection against malaria in children already protected by an insecticide-treated bednet in Burkina Faso: a randomised, double-blind, placebo-controlled trial.

PLoS Med 2011 Feb 1;8(2):e1000408. Epub 2011 Feb 1.

Centre National de Recherche et de Formation sur Paludisme, Ouagadougou, Burkina Faso.

Background: Intermittent preventive treatment of malaria in children (IPTc) is a promising new approach to the control of malaria in areas of seasonal malaria transmission but it is not known if IPTc adds to the protection provided by an insecticide-treated net (ITN).

Methods And Findings: An individually randomised, double-blind, placebo-controlled trial of seasonal IPTc was conducted in Burkina Faso in children aged 3 to 59 months who were provided with a long-lasting insecticide-treated bednet (LLIN). Three rounds of treatment with sulphadoxine pyrimethamine plus amodiaquine or placebos were given at monthly intervals during the malaria transmission season. Passive surveillance for malaria episodes was established, a cross-sectional survey was conducted at the end of the malaria transmission season, and use of ITNs was monitored during the intervention period. Incidence rates of malaria were compared using a Cox regression model and generalized linear models were fitted to examine the effect of IPTc on the prevalence of malaria infection, anaemia, and on anthropometric indicators. 3,052 children were screened and 3,014 were enrolled in the trial; 1,505 in the control arm and 1,509 in the intervention arm. Similar proportions of children in the two treatment arms were reported to sleep under an LLIN during the intervention period (93%). The incidence of malaria, defined as fever or history of fever with parasitaemia ≥ 5,000/µl, was 2.88 (95% confidence interval [CI] 2.70-3.06) per child during the intervention period in the control arm versus 0.87 (95% CI 0.78-0.97) in the intervention arm, a protective efficacy (PE) of 70% (95% CI 66%-74%) (p<0.001). There was a 69% (95% CI 6%-90%) reduction in incidence of severe malaria (p = 0.04) and a 46% (95% CI 7%-69%) (p = 0.03) reduction in the incidence of all-cause hospital admissions. IPTc reduced the prevalence of malaria infection at the end of the malaria transmission season by 73% (95% CI 68%-77%) (p<0.001) and that of moderately severe anaemia by 56% (95% CI 36%-70%) (p<0.001). IPTc reduced the risks of wasting (risk ratio [RR] = 0.79; 95% CI 0.65-1.00) (p = 0.05) and of being underweight (RR = 0.84; 95% CI 0.72-0.99) (p = 0.03). Children who received IPTc were 2.8 (95% CI 2.3-3.5) (p<0.001) times more likely to vomit than children who received placebo but no drug-related serious adverse event was recorded.

Conclusions: IPT of malaria provides substantial protection against malaria in children who sleep under an ITN. There is now strong evidence to support the integration of IPTc into malaria control strategies in areas of seasonal malaria transmission.

Trial Registration: ClinicalTrials.govNCT00738946. Please see later in the article for the Editors' Summary.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pmed.1000408DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032552PMC
February 2011

Safety and immunogenicity of the malaria vaccine candidate MSP3 long synthetic peptide in 12-24 months-old Burkinabe children.

PLoS One 2009 Oct 26;4(10):e7549. Epub 2009 Oct 26.

Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso.

Background: A Phase Ia trial in European volunteers of the candidate vaccine merozoite surface protein 3 (MSP3), a Plasmodium falciparum blood stage membrane, showed that it induces biologically active antibodies able to achieve parasite killing in vitro, while a phase Ib trial in semi-immune adult volunteers in Burkina Faso confirmed that the vaccine was safe. The aim of this study was to assess the safety and immunogenicity of this vaccine candidate in children aged 12-24 months living in malaria endemic area of Burkina Faso.

Methods: The study was a double-blind, randomized, controlled, dose escalation phase Ib trial, designed to assess the safety, reactogenicity and immunogenicity of three doses of either 15 or 30 microg of MSP3-LSP adsorbed on aluminum hydroxide in 45 children 12 to 24 months of age randomized into three equal groups. Each group received 3 vaccine doses (on days 0, 28 and 56) of either 15 microg of MSP3-LSP, 30 microg of MSP3-LSP or of the Engerix B hepatitis B vaccine. Children were visited at home daily for the 6 days following each vaccination to solicit symptoms which might be related to vaccination. Serious adverse events occurring during the study period (1 year) were recorded. Antibody responses to MSP3-LSP were measured on days 0, 28, 56 and 84.

Results: All 45 enrolled children received three MSP3 vaccine doses. No serious adverse events were reported. Most of the adverse events reported were mild to moderate in severity. The only reported local symptoms with grade 3 severity were swelling and induration, with an apparently dose related response. All grade 3 adverse events resolved without any sequelae. Both MSP3 doses regimens were able to elicit high levels of anti-MSP3 specific IgG1 and IgG3 antibodies in the volunteers with very little or no increase in IgG2, IgG4 and IgM classes: i.e. vaccination induced predominantly the isotypes involved in the monocyte-dependent mechanism of P. falciparum parasite-killing.

Conclusion: Our results support the promise of MSP3-LSP as a malaria vaccine candidate, both in terms of tolerability and of immunogenicity. Further assessment of the efficacy of this vaccine is recommended.

Trial Registration: ClinicalTrials.gov NCT00452088.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007549PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2764341PMC
October 2009

Population pharmacokinetics of artesunate and amodiaquine in African children.

Malar J 2009 Aug 20;8:200. Epub 2009 Aug 20.

Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok 10400, Thailand.

Background: Pharmacokinetic (PK) data on amodiaquine (AQ) and artesunate (AS) are limited in children, an important risk group for malaria. The aim of this study was to evaluate the PK properties of a newly developed and registered fixed dose combination (FDC) of artesunate and amodiaquine.

Methods: A prospective population pharmacokinetic study of AS and AQ was conducted in children aged six months to five years. Participants were randomized to receive the new artesunate and amodiaquine FDC or the same drugs given in separate tablets. Children were divided into two groups of 70 (35 in each treatment arm) to evaluate the pharmacokinetic properties of AS and AQ, respectively. Population pharmacokinetic models for dihydroartemisinin (DHA) and desethylamodiaquine (DeAq), the principal pharmacologically active metabolites of AS and AQ, respectively, and total artemisinin anti-malarial activity, defined as the sum of the molar equivalent plasma concentrations of DHA and artesunate, were constructed using the non-linear mixed effects approach. Relative bioavailability between products was compared by estimating the ratios (and 95% CI) between the areas under the plasma concentration-time curves (AUC).

Results: The two regimens had similar PK properties in young children with acute malaria. The ratio of loose formulation to fixed co-formulation AUCs, was estimated as 1.043 (95% CI: 0.956 to 1.138) for DeAq. For DHA and total anti-malarial activity AUCs were estimated to be the same. Artesunate was rapidly absorbed, hydrolysed to DHA, and eliminated. Plasma concentrations were significantly higher following the first dose, when patients were acutely ill, than after subsequent doses when patients were usually afebrile and clinically improved. Amodiaquine was converted rapidly to DeAq, which was then eliminated with an estimated median (range) elimination half-life of 9 (7 to 12) days. Efficacy was similar in the two treatments groups, with cure rates of 0.946 (95% CI: 0.840-0.982) in the AS+AQ group and 0.892 (95% CI: 0.787 - 0.947) in the AS/AQ group. Four out of five patients with PCR confirmed recrudescences received AQ doses < 10 mg/kg. Both regimens were well tolerated. No child developed severe, post treatment neutropaenia (<1,000/muL). There was no evidence of AQ dose related hepatotoxicity, but one patient developed an asymptomatic rise in liver enzymes that was resolving by Day-28.

Conclusion: The bioavailability of the co-formulated AS-AQ FDC was similar to that of the separate tablets for desethylamodiaquine, DHA and the total anti-malarial activity. These data support the use this new AS-AQ FDC in children with acute uncomplicated falciparum malaria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1475-2875-8-200DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224946PMC
August 2009
-->