Bioinformatics 2016 07 21;32(14):2176-83. Epub 2016 Mar 21.
Department of Genetics, University Medical Center Groningen, Genomics Coordination Center, University of Groningen, Groningen, The Netherlands Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Motivation: While the size and number of biobanks, patient registries and other data collections are increasing, biomedical researchers still often need to pool data for statistical power, a task that requires time-intensive retrospective integration.
Results: To address this challenge, we developed MOLGENIS/connect, a semi-automatic system to find, match and pool data from different sources. The system shortlists relevant source attributes from thousands of candidates using ontology-based query expansion to overcome variations in terminology. Then it generates algorithms that transform source attributes to a common target DataSchema. These include unit conversion, categorical value matching and complex conversion patterns (e.g. calculation of BMI). In comparison to human-experts, MOLGENIS/connect was able to auto-generate 27% of the algorithms perfectly, with an additional 46% needing only minor editing, representing a reduction in the human effort and expertise needed to pool data.
Availability And Implementation: Source code, binaries and documentation are available as open-source under LGPLv3 from http://github.com/molgenis/molgenis and www.molgenis.org/connect
Contact: : m.a.swertz@rug.nl
Supplementary Information: Supplementary data are available at Bioinformatics online.