Publications by authors named "Erwin L A Blezer"

31 Publications

Patterns of Care, Tolerability, and Safety of the First Cohort of Patients Treated on a Novel High-Field MR-Linac Within the MOMENTUM Study: Initial Results From a Prospective Multi-Institutional Registry.

Int J Radiat Oncol Biol Phys 2021 Jul 13. Epub 2021 Jul 13.

Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, Netherlands.

Purpose: High-field magnetic resonance-linear accelerators (MR-Linacs), linear accelerators combined with a diagnostic magnetic resonance imaging (MRI) scanner and online adaptive workflow, potentially give rise to novel online anatomic and response adaptive radiation therapy paradigms. The first high-field (1.5T) MR-Linac received regulatory approval in late 2018, and little is known about clinical use, patient tolerability of daily high-field MRI, and toxicity of treatments. Herein we report the initial experience within the MOMENTUM Study (NCT04075305), a prospective international registry of the MR-Linac Consortium.

Methods And Materials: Patients were included between February 2019 and October 2020 at 7 institutions in 4 countries. We used descriptive statistics to describe the patterns of care, tolerability (the percentage of patients discontinuing their course early), and safety (grade 3-5 Common Terminology Criteria for Adverse Events v.5 acute toxicity within 3 months after the end of treatment).

Results: A total 943 patients participated in the MOMENTUM Study, 702 of whom had complete baseline data at the time of this analysis. Patients were primarily male (79%) with a median age of 68 years (range, 22-93) and were treated for 39 different indications. The most frequent indications were prostate (40%), oligometastatic lymph node (17%), brain (12%), and rectal (10%) cancers. The median number of fractions was 5 (range, 1-35). Six patients discontinued MR-Linac treatments, but none due to an inability to tolerate repeated high-field MRI. Of the 415 patients with complete data on acute toxicity at 3-month follow-up, 18 (4%) patients experienced grade 3 acute toxicity related to radiation. No grade 4 or 5 acute toxicity related to radiation was observed.

Conclusions: In the first 21 months of our study, patterns of care were diverse with respect to clinical utilization, body sites, and radiation prescriptions. No patient discontinued treatment due to inability to tolerate daily high-field MRI scans, and the acute radiation toxicity experience was encouraging.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2021.07.003DOI Listing
July 2021

Biomolecular changes and subsequent time-dependent recovery in hippocampal tissue after experimental mild traumatic brain injury.

Sci Rep 2021 Jun 14;11(1):12468. Epub 2021 Jun 14.

Department of Biophysics, Faculty of Medicine, Altinbas University, Bakirkoy, Istanbul, Turkey.

Traumatic brain injury (TBI) is the main cause of disability and mortality in individuals under the age of 45 years. Elucidation of the molecular and structural alterations in brain tissue due to TBI is crucial to understand secondary and long-term effects after traumatic brain injury, and to develop and apply the correct therapies. In the current study, the molecular effects of TBI were investigated in rat brain at 24 h and 1 month after the injury to determine acute and chronic effects, respectively by Fourier transform infrared imaging. This study reports the time-dependent contextual and structural effects of TBI on hippocampal brain tissue. A mild form of TBI was induced in 11-week old male Sprague Dawley rats by weight drop. Band area and intensity ratios, band frequency and bandwidth values of specific spectral bands showed that TBI causes significant structural and contextual global changes including decrease in carbonyl content, unsaturated lipid content, lipid acyl chain length, membrane lipid order, total protein content, lipid/protein ratio, besides increase in membrane fluidity with an altered protein secondary structure and metabolic activity in hippocampus 24 h after injury. However, improvement and/or recovery effects in these parameters were observed at one month after TBI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-021-92015-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8203626PMC
June 2021

Identification of Risk of Cardiovascular Disease by Automatic Quantification of Coronary Artery Calcifications on Radiotherapy Planning CT Scans in Patients With Breast Cancer.

JAMA Oncol 2021 Jul;7(7):1024-1032

Division of Imaging and Oncology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands.

Importance: Cardiovascular disease (CVD) is common in patients treated for breast cancer, especially in patients treated with systemic treatment and radiotherapy and in those with preexisting CVD risk factors. Coronary artery calcium (CAC), a strong independent CVD risk factor, can be automatically quantified on radiotherapy planning computed tomography (CT) scans and may help identify patients at increased CVD risk.

Objective: To evaluate the association of CAC with CVD and coronary artery disease (CAD) in patients with breast cancer.

Design, Setting, And Participants: In this multicenter cohort study of 15 915 patients with breast cancer receiving radiotherapy between 2005 and 2016 who were followed until December 31, 2018, age, calendar year, and treatment-adjusted Cox proportional hazard models were used to evaluate the association of CAC with CVD and CAD.

Exposures: Overall CAC scores were automatically extracted from planning CT scans using a deep learning algorithm. Patients were classified into Agatston risk categories (0, 1-10, 11-100, 101-399, >400 units).

Main Outcomes And Measures: Occurrence of fatal and nonfatal CVD and CAD were obtained from national registries.

Results: Of the 15 915 participants included in this study, the mean (SD) age at CT scan was 59.0 (11.2; range, 22-95) years, and 15 879 (99.8%) were women. Seventy percent (n = 11 179) had no CAC. Coronary artery calcium scores of 1 to 10, 11 to 100, 101 to 400, and greater than 400 were present in 10.0% (n = 1584), 11.5% (n = 1825), 5.2% (n = 830), and 3.1% (n = 497) respectively. After a median follow-up of 51.2 months, CVD risks increased from 5.2% in patients with no CAC to 28.2% in patients with CAC scores higher than 400. After adjustment, CVD risk increased with higher CAC score (hazard ratio [HR]CAC = 1-10 = 1.1; 95% CI, 0.9-1.4; HRCAC = 11-100 = 1.8; 95% CI, 1.5-2.1; HRCAC = 101-400 = 2.1; 95% CI, 1.7-2.6; and HRCAC>400 = 3.4; 95% CI, 2.8-4.2). Coronary artery calcium was particularly strongly associated with CAD (HRCAC>400 = 7.8; 95% CI, 5.5-11.2). The association between CAC and CVD was strongest in patients treated with anthracyclines (HRCAC>400 = 5.8; 95% CI, 3.0-11.4) and patients who received a radiation boost (HRCAC>400 = 6.1; 95% CI, 3.8-9.7).

Conclusions And Relevance: This cohort study found that coronary artery calcium on breast cancer radiotherapy planning CT scan results was associated with CVD, especially CAD. Automated CAC scoring on radiotherapy planning CT scans may be used as a fast and low-cost tool to identify patients with breast cancer at increased risk of CVD, allowing implementing CVD risk-mitigating strategies with the aim to reduce the risk of CVD burden after breast cancer.

Trial Registration: ClinicalTrials.gov Identifier: NCT03206333.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamaoncol.2021.1144DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8283560PMC
July 2021

Imaging Markers for the Characterization of Gray and White Matter Changes from Acute to Chronic Stages after Experimental Traumatic Brain Injury.

J Neurotrauma 2021 Jun 11;38(12):1642-1653. Epub 2021 Jan 11.

Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078.

Despite clinical symptoms, a large majority of people with mild traumatic brain injury (TBI) have normal computed tomography (CT) and magnetic resonance imaging (MRI) scans. Therefore, present-day neuroimaging tools are insufficient to diagnose or classify low grades of TBI. Advanced neuroimaging techniques, such as diffusion-weighted and functional MRI, may yield novel biomarkers that may aid in the diagnosis of TBI. Therefore, the present study had two aims: first, to characterize the development of MRI-based measures of structural and functional changes in gray and white matter regions from acute to chronic stages after mild and moderate TBI; and second, to identify the imaging markers that can most accurately predict outcome after TBI. To these aims, 52 rats underwent serial functional (resting-state) and structural (T1-, T2-, and diffusion-weighted) MRI before and 1 h, 1 day, 1 week, 1 month and 3-4 months after mild or moderate experimental TBI. All rats underwent behavioral testing. Histology was performed in subgroups of rats at different time points. Early after moderate TBI, axial and radial diffusivities were increased, and fractional anisotropy was reduced in the corpus callosum and bilateral hippocampi, which normalized over time and was paralleled by recovery of sensorimotor function. Correspondingly, histology revealed decreased myelin staining early after TBI, which was not detected at chronic stages. No significant changes in individual outcome measures were detected after mild TBI. However, multivariate analysis showed a significant additive contribution of diffusion parameters in the distinction between control and different grades of TBI-affected brains. Therefore, combining multiple imaging markers may increase the sensitivity for TBI-related pathology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2020.7151DOI Listing
June 2021

The MOMENTUM Study: An International Registry for the Evidence-Based Introduction of MR-Guided Adaptive Therapy.

Front Oncol 2020 7;10:1328. Epub 2020 Sep 7.

Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, Netherlands.

MR-guided Radiation Therapy (MRgRT) allows for high-precision radiotherapy under real-time MR visualization. This enables margin reduction and subsequent dose escalation which may lead to higher tumor control and less toxicity. The Unity MR-linac (Elekta AB, Stockholm, Sweden) integrates a linear accelerator with a 1.5T diagnostic quality MRI and an online adaptive workflow. A prospective international registry was established to facilitate the evidence-based implementation of the Unity MR-linac into clinical practice, to systemically evaluate long-term outcomes, and to aid further technical development of MR-linac-based MRgRT. In February 2019, the Multi-OutcoMe EvaluatioN of radiation Therapy Using the MR-linac study (MOMENTUM) started within the MR-linac Consortium. The MOMENTUM study is an international academic-industrial partnership between several hospitals and industry partner Elekta. All patients treated on the MR-linac are eligible for inclusion in MOMENTUM. For participants, we collect clinical patient data (e.g., patient, tumor, and treatment characteristics) and technical patient data which is defined as information generated on the MR-linac during treatment. The data are captured, pseudonymized, and stored in an international registry at set time intervals up to two years after treatment. Patients can choose to provide patient-reported outcomes and consent to additional MRI scans acquired on the MR-linac. This registry will serve as a data platform that supports multicenter research investigating the MR-linac. Rules and regulations on data sharing, data access, and intellectual property rights are summarized in an academic-industrial collaboration agreement. Data access rules ensure secure data handling and research integrity for investigators and institutions. Separate data access rules exist for academic and industry partners. This study is registered at ClinicalTrials.gov with ID: NCT04075305 (https://clinicaltrials.gov/ct2/show/NCT04075305). The multi-institutional MOMENTUM study has been set up to collect clinical and technical patient data to advance technical development, and facilitate evidenced-based implementation of MR-linac technology with the ultimate purpose to improve tumor control, survival, and quality of life of patients with cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fonc.2020.01328DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505056PMC
September 2020

Structural and functional MRI of altered brain development in a novel adolescent rat model of quinpirole-induced compulsive checking behavior.

Eur Neuropsychopharmacol 2020 04 7;33:58-70. Epub 2020 Mar 7.

Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.

Obsessive-compulsive disorder (OCD) is increasingly considered to be a neurodevelopmental disorder. However, despite insights in neural substrates of OCD in adults, less is known about mechanisms underlying compulsivity during brain development in children and adolescents. Therefore, we developed an adolescent rat model of compulsive checking behavior and investigated developmental changes in structural and functional measures in the frontostriatal circuitry. Five-weeks old Sprague Dawley rats were subcutaneously injected with quinpirole (n = 21) or saline (n = 20) twice a week for five weeks. Each injection was followed by placement in the middle of an open field table, and compulsive behavior was quantified as repeated checking behavior. Anatomical, resting-state functional and diffusion MRI at 4.7T were conducted before the first and after the last quinpirole/saline injection to measure regional volumes, functional connectivity and structural integrity in the brain, respectively. After consecutive quinpirole injections, adolescent rats demonstrated clear checking behavior and repeated travelling between two open-field zones. MRI measurements revealed an increase of regional volumes within the frontostriatal circuits and an increase in fractional anisotropy (FA) in white matter areas during maturation in both experimental groups. Quinpirole-injected rats showed a larger developmental increase in FA values in the internal capsule and forceps minor compared to control rats. Our study points toward a link between development of compulsive behavior and altered white matter maturation in quinpirole-injected adolescent rats, in line with observations in pediatric patients with compulsive phenotypes. This novel animal model provides opportunities to investigate novel treatments and underlying mechanisms for patients with early-onset OCD specifically.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.euroneuro.2020.02.004DOI Listing
April 2020

Distinct structure-function relationships across cortical regions and connectivity scales in the rat brain.

Sci Rep 2020 01 9;10(1):56. Epub 2020 Jan 9.

Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands.

An improved understanding of the structure-function relationship in the brain is necessary to know to what degree structural connectivity underpins abnormal functional connectivity seen in disorders. We integrated high-field resting-state fMRI-based functional connectivity with high-resolution macro-scale diffusion-based and meso-scale neuronal tracer-based structural connectivity, to obtain an accurate depiction of the structure-function relationship in the rat brain. Our main goal was to identify to what extent structural and functional connectivity strengths are correlated, macro- and meso-scopically, across the cortex. Correlation analyses revealed a positive correspondence between functional and macro-scale diffusion-based structural connectivity, but no significant correlation between functional connectivity and meso-scale neuronal tracer-based structural connectivity. Zooming in on individual connections, we found strong functional connectivity in two well-known resting-state networks: the sensorimotor and default mode network. Strong functional connectivity within these networks coincided with strong short-range intrahemispheric structural connectivity, but with weak heterotopic interhemispheric and long-range intrahemispheric structural connectivity. Our study indicates the importance of combining measures of connectivity at distinct hierarchical levels to accurately determine connectivity across networks in the healthy and diseased brain. Although characteristics of the applied techniques may affect where structural and functional networks (dis)agree, distinct structure-function relationships across the brain could also have a biological basis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-56834-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952407PMC
January 2020

An Open Resource for Non-human Primate Imaging.

Neuron 2018 10 27;100(1):61-74.e2. Epub 2018 Sep 27.

Centre for Social Learning and Cognitive Evolution, School of Biology, University of St. Andrews, St. Andrews, UK.

Non-human primate neuroimaging is a rapidly growing area of research that promises to transform and scale translational and cross-species comparative neuroscience. Unfortunately, the technological and methodological advances of the past two decades have outpaced the accrual of data, which is particularly challenging given the relatively few centers that have the necessary facilities and capabilities. The PRIMatE Data Exchange (PRIME-DE) addresses this challenge by aggregating independently acquired non-human primate magnetic resonance imaging (MRI) datasets and openly sharing them via the International Neuroimaging Data-sharing Initiative (INDI). Here, we present the rationale, design, and procedures for the PRIME-DE consortium, as well as the initial release, consisting of 25 independent data collections aggregated across 22 sites (total = 217 non-human primates). We also outline the unique pitfalls and challenges that should be considered in the analysis of non-human primate MRI datasets, including providing automated quality assessment of the contributed datasets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2018.08.039DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231397PMC
October 2018

Primate Brain Anatomy: New Volumetric MRI Measurements for Neuroanatomical Studies.

Brain Behav Evol 2018 12;91(2):109-117. Epub 2018 Jun 12.

Department of Biology and Helmholtz Institute, Utrecht University, Utrecht, the Netherlands.

Since the publication of the primate brain volumetric dataset of Stephan and colleagues in the early 1980s, no major new comparative datasets covering multiple brain regions and a large number of primate species have become available. However, technological and other advances in the last two decades, particularly magnetic resonance imaging (MRI) and the creation of institutions devoted to the collection and preservation of rare brain specimens, provide opportunities to rectify this situation. Here, we present a new dataset including brain region volumetric measurements of 39 species, including 20 species not previously available in the literature, with measurements of 16 brain areas. These volumes were extracted from MRI of 46 brains of 38 species from the Netherlands Institute of Neuroscience Primate Brain Bank, scanned at high resolution with a 9.4-T scanner, plus a further 7 donated MRI of 4 primate species. Partial measurements were made on an additional 8 brains of 5 species. We make the dataset and MRI scans available online in the hope that they will be of value to researchers conducting comparative studies of primate evolution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000488136DOI Listing
March 2019

Immune profile of an atypical EAE model in marmoset monkeys immunized with recombinant human myelin oligodendrocyte glycoprotein in incomplete Freund's adjuvant.

J Neuroinflammation 2015 Sep 17;12:169. Epub 2015 Sep 17.

Department of Immunobiology, Biomedical Primate Research Centre, P.O. Box 3306, 2280, GH, Rijswijk, The Netherlands.

Background: Experimental autoimmune encephalomyelitis (EAE) in the common marmoset monkey (Callithrix jacchus) is a relevant preclinical model for translational research into immunopathogenic mechanisms operating in multiple sclerosis (MS). Prior studies showed a core pathogenic role of T and B cells specific for myelin oligodendrocyte glycoprotein (MOG). However, in those studies, the quality of the response against MOG epitopes was strongly biased by bacterial antigens in the complete Freund's adjuvant (CFA), in which the immunizing recombinant human (rh) MOG protein had been formulated. In response to the need of a more refined EAE model, we have tested whether disease could also be induced with rhMOG in incomplete Freund's adjuvant (IFA).

Method: Marmosets were immunized with rhMOG emulsified in IFA in the dorsal skin. Monkeys that did not develop neurological deficit were given booster immunizations at 28-day interval with the same antigen preparation. In a second experiment, three marmoset twin pairs were sensitized against MOG peptides in IFA to study a possibility for suppressive activity towards pathogenic T cells directed against the encephalitogenic epitope MOG40-48.

Results: Despite the absence of strong danger signals in the rhMOG/IFA inoculum, all monkeys developed clinically evident EAE symptoms. Moreover, in all monkeys, demyelinated lesions were present in the white matter and in two cases also in the cortical grey matter. Immune profiling at height of the disease showed a dominant T cell response against the overlapping peptides 14-36 and 24-46, but reactivity against the pathogenically most relevant peptide 34-56 was conspicuously absent. In the second experiment, there was an indication for a possible suppressive mechanism.

Conclusions: Immunization of marmoset monkeys with rhMOG in IFA elicits clinical EAE in all animals. Moreover, rhMOG contains pathogenic and regulatory epitopes, but the pathogenic hierarchy of rhMOG epitopes is strongly influenced by the adjuvant in which the protein is formulated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12974-015-0378-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574133PMC
September 2015

In vivo MR imaging of intercellular adhesion molecule-1 expression in an animal model of multiple sclerosis.

Contrast Media Mol Imaging 2015 Mar-Apr;10(2):111-21. Epub 2014 Apr 22.

Biomedical MR Imaging and Spectroscopy Group, Image Sciences Institute, University Medical Center Utrecht, Yalelaan 2, 3584 CM, Utrecht, The Netherlands.

Upregulation of intercellular adhesion molecule 1 (ICAM-1) is an early event in lesion formation in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Monitoring its expression may provide a biomarker for early disease activity and allow validation of anti-inflammatory interventions. Our objective was therefore to explore whether ICAM-1 expression can be visualized in vivo during EAE with magnetic resonance imaging (MRI) using micron-sized particles of iron oxide (MPIO), and to compare accumulation profiles of targeted and untargeted MPIO, and a gadolinium-containing agent. Targeted αICAM-1-MPIO/untargeted IgG-MPIO were injected at two model-characteristic phases of EAE (in myelin oligodendrocyte glycoprotein35-55 -immunized C57BL/6 J mice), that is, at the peak of the acute phase (14 ± 1 days post-immunization) and during the chronic phase (26 ± 1 days post-immunization), followed by T2 *-weighted MRI. Blood-brain barrier (BBB) permeability was measured using gadobutrol-enhanced MRI. Cerebellar microvessels were analyzed for ICAM-1 mRNA expression using quantitative PCR (qPCR). ICAM-1 and iron oxide presence was examined with immunohistochemistry (IHC). During EAE, ICAM-1 was expressed by brain endothelial cells, macrophages and T-cells as shown with qPCR and (fluorescent) IHC. EAE animals injected with αICAM-1-MPIO showed MRI hypointensities, particularly in the subarachnoid space. αICAM-1-MPIO presence did not differ between the phases of EAE and was not associated with BBB dysfunction. αICAM-1-MPIO were associated with endothelial cells or cells located at the luminal side of blood vessels. In conclusion, ICAM-1 expression can be visualized with in vivo molecular MRI during EAE, and provides an early tracer of disease activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmmi.1602DOI Listing
January 2016

Three-dimensional histologic validation of high-resolution SPECT of antibody distributions within xenografts.

J Nucl Med 2014 May 31;55(5):830-7. Epub 2014 Mar 31.

Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.

Unlabelled: Longitudinal imaging of intratumoral distributions of antibodies in vivo in mouse cancer models is of great importance for developing cancer therapies. In this study, multipinhole SPECT with sub-half-millimeter resolution was tested for exploring intratumoral distributions of radiolabeled antibodies directed toward the epidermal growth factor receptor (EGFr) and compared with full 3-dimensional target expression assessed by immunohistochemistry.

Methods: (111)In-labeled zalutumumab, a human monoclonal human EGFr-targeting antibody, was administered at a nonsaturating dose to 3 mice with xenografted A431 tumors exhibiting high EGFr expression. Total-body and focused in vivo tumor SPECT was performed at 0 and 48 h after injection and compared both visually and quantitatively with full 3-dimensional immunohistochemical staining for EGFr target expression.

Results: SPECT at 48 h after injection showed that activity was predominantly concentrated in the tumor (10.5% ± 1.3% of the total-body activity; average concentration, 30.1% ± 4.6% of the injected dose per cubic centimeter). (111)In-labeled EGFr-targeting antibodies were distributed heterogeneously throughout the tumor. Some hot spots were observed near the tumor rim. Immunohistochemistry indicated that the antibody distributions obtained by SPECT were morphologically similar to those obtained for ex vivo EGFr target expression. Regions showing low SPECT activity were necrotic or virtually negative for EGFr target expression. A good correlation (r = 0.86, P < 0.0001) was found between the percentage of regions showing low activity on SPECT and the percentage of necrotic tissue on immunohistochemistry.

Conclusion: Multipinhole SPECT enables high-resolution visualization and quantification of the heterogeneity of (111)In-zalutumumab concentrations in vivo.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2967/jnumed.113.125401DOI Listing
May 2014

Overview of models, methods, and reagents developed for translational autoimmunity research in the common marmoset (Callithrix jacchus).

Exp Anim 2013 ;62(3):159-71

Department of Immunobiology, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH Rijswijk, The Netherlands.

The common marmoset (Callithrix jacchus) is a small-bodied Neotropical primate and a useful preclinical animal model for translational research into autoimmune-mediated inflammatory diseases (AIMID), such as rheumatoid arthritis (RA) and multiple sclerosis (MS). The animal model for MS established in marmosets has proven their value for exploratory research into (etio) pathogenic mechanisms and for the evaluation of new therapies that cannot be tested in lower species because of their specificity for humans. Effective usage of the marmoset in preclinical immunological research has been hampered by the limited availability of blood for immunological studies and of reagents for profiling of cellular and humoral immune reactions. In this paper, we give a concise overview of the procedures and reagents that were developed over the years in our laboratory in marmoset models of the above-mentioned diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160941PMC
http://dx.doi.org/10.1538/expanim.62.159DOI Listing
January 2014

Antagonizing the α4β1 integrin, but not α4β7, inhibits leukocytic infiltration of the central nervous system in rhesus monkey experimental autoimmune encephalomyelitis.

J Immunol 2013 Mar 30;190(5):1961-73. Epub 2013 Jan 30.

Biomedical Primate Research Centre, 2280 GH Rijswijk, The Netherlands.

The immune system is characterized by the preferential migration of lymphocytes through specific tissues (i.e., tissue tropism). Tissue tropism is mediated, in part, by the α(4) integrins expressed by T lymphocytes. The α(4)β(1) integrin mediates migration of memory T lymphocytes into the CNS, whereas the α(4)β(7) integrin mediates migration preferentially into gastrointestinal tissue. This paradigm was established primarily from investigations in rodents; thus, the objective of this investigation was to determine if blocking the α(4)β(7) integrin exclusively would affect migration of T lymphocytes into the CNS of primates. The effects of the dual α(4)β(1) and α(4)β(7) antagonist natalizumab were compared with those of the α(4)β(7) antagonist vedolizumab on experimental autoimmune encephalomyelitis in the rhesus monkey. Animals received an initial i.v. bolus of placebo, natalizumab (30 mg/kg), or vedolizumab (30 mg/kg) before intracutaneous immunization with recombinant human myelin oligodendrocyte glycoprotein and then Ab once weekly thereafter. Natalizumab prevented CNS inflammation and demyelination significantly (p < 0.05), compared with time-matched placebo control animals, whereas vedolizumab did not inhibit these effects, despite saturating the α(4)β(7) integrin in each animal for the duration of the investigation. These results demonstrate that blocking α(4)β(7) exclusively does not inhibit immune surveillance of the CNS in primates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1202490DOI Listing
March 2013

Antibodies against human BLyS and APRIL attenuate EAE development in marmoset monkeys.

J Neuroimmune Pharmacol 2012 Sep 30;7(3):557-70. Epub 2012 Jun 30.

Department Immunobiology, Biomedical Primate Research Centre, PO Box 3306, 2280 GH, Rijswijk, The Netherlands.

B lymphocyte stimulator (BLyS, also indicated as BAFF (B-cell activating factor) and CD257), and A Proliferation Inducing Ligand (APRIL, CD256) are two members of the TNF superfamily with a central role in B cell survival. Antibodies against these factors have potential therapeutic relevance in autoimmune inflammatory disorders with a proven pathogenic contribution of B cells, such as multiple sclerosis (MS). In the current study we performed a multi-parameter efficacy comparison of monoclonal antibodies against human anti-BLyS and anti-APRIL in a common marmoset (Callithrix jacchus) model of experimental autoimmune encephalomyelitis (EAE). A MS-like disease was induced by immunization with recombinant human myelin/oligodendrocyte glycoprotein (rhMOG) in complete Freund's adjuvant. The results show that the anti-BLyS and anti-APRIL antibody cause significant depletion of circulating CD20+ B cells, but a small subset of CD20 + CD40(high) B cells was not depleted. Induction of CD20+ B cell depletion from lymph nodes was only observed in the anti-BLyS treated monkeys. Both antibodies had a significant inhibitory effect on disease development, but all monkeys developed clinically evident EAE. Anti-BLyS treated monkeys were sacrificed with the same clinical signs as saline-treated monkeys, but nevertheless displayed significantly reduced spinal cord demyelination. This effect was not observed in the anti-APRIL treated monkeys. The two antibodies had a different effect on T cell subset activation and the profiles of ex vivo released cytokines. In conclusion, treatment with anti-BLyS and anti-APRIL delays the development of neurological disease in a relevant preclinical model of MS. The two mAbs achieve this effect via different mechanisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11481-012-9384-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3419352PMC
September 2012

B-cell depletion abrogates T cell-mediated demyelination in an antibody-nondependent common marmoset experimental autoimmune encephalomyelitis model.

J Neuropathol Exp Neurol 2012 Aug;71(8):716-28

Department Immunobiology, Biomedical Primate Research Centre, Rijswijk, the Netherlands.

CD20-positive B-cell depletion is a highly promising treatment for multiple sclerosis (MS), but the mechanisms underlying therapeutic effects are poorly understood. B cells are thought to contribute to MS pathogenesis by producing autoantibodies that amplify demyelination via opsonization of myelin. To analyze autoantibody-nondependent functions of B cells in an animal model of MS, we used a novel T cell-driven experimental autoimmune encephalomyelitis (EAE) model in marmoset monkeys (Callithrix jacchus). In this model, demyelination of brain and spinal cord white and gray matter and the ensuing neurological deficits are induced by immunization with peptide 34 to 56 of myelin/oligodendrocyte glycoprotein (MOG34-56) in incomplete Freund's adjuvant. Although autoantibodies do not have a detectable pathogeniccontribution in the model, depletion of B cells with monoclonal antibody 7D8, a human IgG1κ monoclonal antibody against human CD20, suppressed clinical and pathological EAE. In B cell-depleted monkeys, the activation of peptide-specific Th17-producing and cytotoxic T cells, which in previous studies were found to play an essential role in disease induction, was impaired. Thus, we demonstrate a critical antibody-nondependent role for B cells in EAE, that is, the activation of pathogenic T cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/NEN.0b013e3182622691DOI Listing
August 2012

Unravelling the T-cell-mediated autoimmune attack on CNS myelin in a new primate EAE model induced with MOG34-56 peptide in incomplete adjuvant.

Eur J Immunol 2012 Jan 2;42(1):217-27. Epub 2011 Dec 2.

Department of Immunology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.

Induction of experimental autoimmune encephalomyelitis (EAE) has been documented in common marmosets using peptide 34-56 from human myelin/oligodendrocyte glycoprotein (MOG(34-56) ) in incomplete Freund's adjuvant (IFA). Here, we report that this EAE model is associated with widespread demyelination of grey and white matter. We performed an in-depth analysis of the specificity, MHC restriction and functions of the activated T cells in the model, which likely cause EAE in an autoantibody-independent manner. T-cell lines isolated from blood and lymphoid organs of animals immunized with MOG(34-56) displayed high production of IL-17A and specific lysis of MOG(34-56) -pulsed EBV B-lymphoblastoid cells as typical hallmarks. Cytotoxicity was directed at the epitope MOG(40-48) presented by the non-classical MHC class Ib allele Caja-E, which is orthologue to HLA-E and is expressed in non-inflamed brain. In vivo activated T cells identified by flow cytometry in cultures with MOG(34-56,) comprised CD4(+) CD56(+) and CD4(+) CD8(+) CD56(+) T cells. Furthermore, phenotypical analysis showed that CD4(+) CD8(+) CD56(+) T cells also expressed CD27, but CD16, CD45RO, CD28 and CCR7 were absent. These results show that, in the MOG34-56/IFA marmoset EAE model, a Caja-E-restricted population of autoreactive cytotoxic T cells plays a key role in the process of demyelination in the grey and white matter.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.201141863DOI Listing
January 2012

Targeted multi-pinhole SPECT.

Eur J Nucl Med Mol Imaging 2011 Mar 10;38(3):552-61. Epub 2010 Nov 10.

Image Sciences Institute, University Medical Centre Utrecht, Utrecht, The Netherlands.

Purpose: Small-animal single photon emission computed tomography (SPECT) with focused multi-pinhole collimation geometries allows scanning modes in which large amounts of photons can be collected from specific volumes of interest. Here we present new tools that improve targeted imaging of specific organs and tumours, and validate the effects of improved targeting of the pinhole focus.

Methods: A SPECT system with 75 pinholes and stationary detectors was used (U-SPECT-II). An XYZ stage automatically translates the animal bed with a specific sequence in order to scan a selected volume of interest. Prior to stepping the animal through the collimator, integrated webcams acquire images of the animal. Using sliders, the user designates the desired volume to be scanned (e.g. a xenograft or specific organ) on these optical images. Optionally projections of an atlas are overlaid semiautomatically to locate specific organs. In order to assess the effects of more targeted imaging, scans of a resolution phantom and a mouse myocardial phantom, as well as in vivo mouse cardiac and tumour scans, were acquired with increased levels of targeting. Differences were evaluated in terms of count yield, hot rod visibility and contrast-to-noise ratio.

Results: By restricting focused SPECT scans to a 1.13-ml resolution phantom, count yield was increased by a factor 3.6, and visibility of small structures was significantly enhanced. At equal noise levels, the small-lesion contrast measured in the myocardial phantom was increased by 42%. Noise in in vivo images of a tumour and the mouse heart was significantly reduced.

Conclusion: Targeted pinhole SPECT improves images and can be used to shorten scan times. Scan planning with optical cameras provides an effective tool to exploit this principle without the necessity for additional X-ray CT imaging.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00259-010-1637-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3034876PMC
March 2011

Magnetic resonance imaging of monocytes labeled with ultrasmall superparamagnetic particles of iron oxide using magnetoelectroporation in an animal model of multiple sclerosis.

Mol Imaging 2010 Oct;9(5):268-77

Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands.

AbstractInfiltrated monocytes play a crucial role in the demyelination process during multiple sclerosis (MS), an inflammatory disease of the central nervous system (CNS). Still, methods to monitor their infiltration pattern over time are lacking. In this study, magnetoelectroporation (MEP) was used to label rat monocytes with the superparamagnetic iron oxide particles Sinerem, Endorem, and Supravist. Supravist-labeled monocytes were injected in rats that we induced with experimental autoimmune encephalomyelitis, a model for MS. Imaging at 4.7 and 9.4 T revealed multiple foci of decreased signal intensity predominantly located in the cerebellum. Immunohistochemical evaluation confirmed the presence of intracellular iron in infiltrated cells, indicating the suitability of MEP to specifically follow labeled monocytes in vivo in this disease model. This technique may be further optimized and potentially used in MS patients to assess monocyte migration into the brain and to monitor the efficacy of therapeutic agents aimed at blocking cellular migration into the CNS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3031981PMC
October 2010

Dynamics and fate of USPIO in the central nervous system in experimental autoimmune encephalomyelitis.

NMR Biomed 2010 Nov;23(9):1087-96

Image Sciences Institute, University Medical Centre Utrecht, the Netherlands.

Signal loss observed in the brain by MRI following the administration of ultrasmall superparamagnetic particles of iron oxide (USPIO) has been correlated with immune cell activity in inflammatory areas during multiple sclerosis. Uptake of USPIO by circulating monocytes and their migration towards inflammatory areas have been considered as the most important mechanism for USPIO uptake by the brain parenchyma. However, the involvement of a damaged blood-brain barrier is also debated as a possible mechanism for cerebral USPIO uptake. Compared with these uptake-associated issues, little is known about the clearance of USPIO from the brain. The acute uptake and chronic clearance of USPIO in the brain were therefore studied with MRI in an animal model of multiple sclerosis. Lewis Hannover rats with acute experimental autoimmune encephalomyelitis received a single intravenous injection of USPIO (300 µmol Fe/kg), and repetitive MRI of the brain and cervical lymph nodes, a possible drainage pathway, was performed. USPIO were detected in the brain within 1 h after injection independent of the severity of experimental autoimmune encephalomyelitis, and histological analysis revealed extracellular iron clusters colocalising with a leaky blood-brain barrier. Loss of signal was not present 72 h after USPIO injection, irrespective of the disease state. MR images of cervical lymph nodes showed USPIO accumulation at 24 h after administration, which stabilised at 72 h. Histological analyses revealed that USPIO accumulated in infiltrated macrophages in the medulla and subcapsular sinus. The current study demonstrates that USPIO enter the central nervous system directly after administration, pointing to the involvement of a damaged blood-brain barrier in the appearance of USPIO-associated MR abnormalities. Furthermore, a possible role of the cervical lymph nodes as a drainage pathway of USPIO is suggested. These data shed new light on the use of USPIO in neuroinflammatory diseases, identifying USPIO as a marker for both cellular infiltration and blood-brain barrier damage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/nbm.1536DOI Listing
November 2010

Induction of progressive demyelinating autoimmune encephalomyelitis in common marmoset monkeys using MOG34-56 peptide in incomplete freund adjuvant.

J Neuropathol Exp Neurol 2010 Apr;69(4):372-85

Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.

Experimental autoimmune encephalomyelitis in the neotropical primate common marmoset (Callithrix jacchus) is a relevant autoimmune animal model of multiple sclerosis. T cells specific for peptide 34 to 56 of myelin/oligodendrocyte glycoprotein (MOG34-56) have a central pathogenic role in this model. The aim of this study was to assess the requirement for innate immune stimulation for activation of this core pathogenic autoimmune mechanism. Marmoset monkeys were sensitized against synthetic MOG34-56 peptide alone or in combination with the nonencephalitogenic peptide MOG74-96 formulated in incomplete Freund adjuvant, which lacks microbial components. Experimental autoimmune encephalomyelitis development was recorded by monitoring neurological signs, brain magnetic resonance imaging, and longitudinal profiling of cellular and humoral immune parameters. All monkeys developed autoimmune inflammatory/demyelinating central nervous system disease characterized by massive brain and spinal cord demyelinating white matter lesions with activated macrophages and CD3+ T cells. Immune profiling ex vivo demonstrated the activation of mainly CD3+CD4+/8+CD56+ T cells against MOG34-56. Upon ex vivo stimulation, these T cells produced more interleukin 17A compared with TH1 cytokines (e.g. interferon-gamma) and displayed peptide-specific cytolytic activity. These results indicate that the full spectrum of marmoset experimental autoimmune encephalomyelitis can be induced by sensitization against a single MOG peptide in incomplete Freund adjuvant lacking microbial compounds for innate immune activation and by eliciting antigen-specific T-cell cytolytic activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/NEN.0b013e3181d5d053DOI Listing
April 2010

Diffusely abnormal white matter in chronic multiple sclerosis: imaging and histopathologic analysis.

Arch Neurol 2009 May;66(5):601-9

Department of Neurology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands.

Background: Diffuse abnormalities in the white matter (WM), ie, the so-called diffusely abnormal WM (DAWM), as observed on magnetic resonance imaging (MRI), may contribute to the development of clinical disability in multiple sclerosis (MS). Underlying pathologic and MRI characteristics of DAWM are largely unknown.

Objectives: To explore and describe the histopathologic and radiologic characteristics of DAWM in chronic MS.

Design: An MRI and histopathologic postmortem correlative study.

Methods: We analyzed 17 formalin-fixed hemispheric brain slices from 10 patients with chronic MS using histopathologic analysis and qualitative and quantitative MRI. A region-of-interest approach was applied to compare radiologically defined DAWM, normal-appearing WM, and focal WM lesions and to correlate quantitative MRI measures with histopathologic findings.

Main Outcome Measures: The DAWM consisted of extensive axonal loss, decreased myelin density, and chronic fibrillary gliosis, all of which were substantially abnormal compared with normal-appearing WM and significantly different from focal WM lesion pathology. Increased T1- and T2-relaxation times and decreased fractional anisotropy values were found in DAWM regions of interest, in association with extensive axonal loss and reduced myelin density. Increased T1- and T2-relaxation times were associated with chronic gliosis.

Conclusions: This study classifies DAWM in chronic MS as an abnormality that is different from normal-appearing WM and focal WM lesions, most likely resulting from the cumulative effects of ongoing inflammation and axonal pathology. As such, DAWM is likely to substantially contribute to disease progression and may prove to be an important new disease marker in clinical trials focusing on the neurodegenerative aspects of MS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/archneurol.2009.57DOI Listing
May 2009

Unilateral intracarotid injection of holmium microspheres to induce bilateral MRI-validated cerebral embolization in rats.

J Neurosci Methods 2009 Jan 18;176(2):152-6. Epub 2008 Sep 18.

Division of Perioperative Care and Emergency Medicine, University Medical Center Utrecht, mail stop, 3508 GA Utrecht, The Netherlands.

Background: Cerebral embolization models have been hindered by the fact that delivery is predominantly one-sided and cannot be quantified easily. We have developed a model for bilateral cerebral micro-embolization. By using holmium microspheres, it is possible to quantify intracerebral delivery using MRI.

Methods: To validate the quantification of holmium microspheres a phantom study was performed in which concentration of microspheres in solution was compared with the number of holmium-induced artifacts on MRI. After that identical microspheres were administered by unilateral injection in the carotid artery, while the opposite carotid artery was clamped. On post-injection MRI scans, intracerebral delivery and right/left distribution of the microspheres was determined.

Results: In the phantom study it was shown that quantification by MRI is possible and that MRI artifacts represent single microspheres. In the rat brain, about one-third of the injected dose was consistently located on the contralateral side. The administration was reproducible regarding distribution and number of microspheres.

Conclusions: The use of holmium microspheres enables quantification of delivered dose as single microspheres induce artifacts on MRI. By clamping the contralateral carotid artery, one-third of the dose is diverted to the contralateral hemisphere.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2008.09.011DOI Listing
January 2009

Does high-field MR imaging improve cortical lesion detection in multiple sclerosis?

J Neurol 2008 Feb 4;255(2):183-91. Epub 2008 Feb 4.

Department of Radiology, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands.

Objective: Cortical lesions in multiple sclerosis (MS) are notoriously difficult to visualize with standard MR imaging (MRI) techniques. However, the use of higher field-strengths with intrinsically higher signal-to-noise, which can partly be used to increase spatial resolution, may improve cortical lesion detection. Therefore, in this post mortem study, the sensitivity of high field-strength MRI (4.7 T) for cortical lesions was investigated, and compared to that of standard field-strength (1.5 T).

Methods: At 1.5 T, dual-echo T2-weighted spin-echo, as well as 3D-FLAIR images of seventeen formalin-fixed coronal MS and four control hemispheres were acquired. At 4.7 T, the same specimens were imaged with a mainly proton-density (PD)- weighted sequence. Proteolipid protein (PLP)-stained tissue sections (10 microm) of the same brain slices were matched to the corresponding MR images, and cortical lesions were scored on all three MR sequences (blinded to histology) and in tissue sections (blinded to MRI). Sensitivity of the sequences for four cortical lesion types was calculated. Additionally, an unblinded, retrospective MR scoring was performed.

Results: Sensitivity for purely intracortical lesions (histological lesion types II, III, and IV; n = 128) was below 10 % for both 1.5 T and 4.7 T MRI, while mixed gray matter-white matter (type I) lesions (n = 5) were detected in four out of five cases. All lesion counts increased upon retrospective (unblinded) scoring. However, up to 80% of the intracortical lesions still remained undetected.

Conclusions: MRI sensitivity for post mortem detection of cortical lesions is low, even when a higher field-strength was used. It varies, however, for different subtypes of cortical lesions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00415-008-0620-5DOI Listing
February 2008

Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function.

Radiology 2007 May;243(2):467-74

Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands.

Purpose: To label human monocytes with superparamagnetic iron oxide (SPIO) and compare labeling efficiency with that of ultrasmall SPIO (USPIO) and evaluate the effect of iron incorporation on cell viability, migratory capacity, and proinflammatory cytokine production.

Materials And Methods: The study was approved by the institutional ethics committee; informed consent was obtained from donors. Freshly isolated human monocytes were labeled with iron particles of two sizes, USPIOs of 30 nm and SPIOs of 150 nm, for 1.5 hours in culture medium containing 0.1, 0.5, 1.0, and 3.7 mg of iron per milliliter. Labeling efficiency was determined with relaxation time magnetic resonance (MR) imaging (4.7 T) and Prussian blue staining for presence of intracellular iron. Cell viability was monitored; migratory capacity of monocytes after labeling was evaluated by using an in vitro assay with monolayers of brain endothelial cells. Levels of proinflammatory cytokines, interleukin (IL) 1 and IL-6, were measured with enzyme-linked immunosorbent assay 24 hours after labeling. Data were analyzed with Student t test or two-way analysis of variance followed by a multiple-comparison procedure.

Results: R2 relaxation rates increased for cell samples incubated with SPIOs, whereas rates were not affected for samples incubated with highest concentration of USPIOs. Labeling monocytes with SPIOs (1.0 mg Fe/mL) resulted in an R2 of 13.1 sec(-1) +/- 0.8 (standard error of the mean) (7 sec(-1) +/- 0.2 for vehicle-treated cells, P < .05) and had no effect on cell viability. On the basis of T2 relaxation times, the in vitro MR detection limit of 58 labeled monocytes per 0.05 microL was calculated. Migration of labeled monocytes was not different from that of vehicle-treated cells. Intracellular iron had no effect on production of IL-1 and IL-6 24 hours after labeling.

Conclusion: In vitro labeling of human monocytes is effective by using SPIOs, not USPIOs. Incubation with SPIOs (1.0 mg Fe/mL) results in efficient labeling detectable on MR images and does not affect cellular viability and activation markers such as cell migration and cytokine production.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.2432060120DOI Listing
May 2007

Quantitative MRI-pathology correlations of brain white matter lesions developing in a non-human primate model of multiple sclerosis.

NMR Biomed 2007 Apr;20(2):90-103

Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.

Experimental autoimmune encephalomyelitis (EAE) induced with recombinant human myelin/oligodendrocyte glycoprotein in the common marmoset is a useful preclinical model of multiple sclerosis in which white matter lesions can be well visualized with MRI. In this study we characterized lesion progression with quantitative in vivo MRI (4.7 T; T(1) relaxation time +/- Gd-DTPA; T(2) relaxation time; magnetization transfer ratio, MTR, imaging) and correlated end stage MRI presentation with quantitative ex vivo MRI (formaldehyde fixed brains; T(1) and T(2) relaxation times; MTR) and histology. The histopathological characterization included axonal density measurements and the numeric quantification of infiltrated macrophages expressing markers for early active [luxol fast blue (LFB) or migration inhibition factor-related protein-14 positive] or late active/inactive [periodic acid Schiff (PAS) positive] demyelinating lesion. MRI experiments were done every two weeks until the monkeys were sacrificed with severe EAE-related motor deficits. Compared with the normal appearing white matter, lesions showed an initial increase in T(1) relaxation times, leakage of Gd-DTPA and decrease in MTR values. The progressive enlargement of lesions was associated with stabilized T(1) values, while T(2) initially increased and stabilized thereafter and MTR remained decreased. Gd-DTPA leakage was highly variable throughout the experiment. MRI characteristics of the cortex and (normal appearing) white matter did not change during the experiment. We observed that in vivo MTR values correlated positively with the number of early active (LFB+) and negatively with late active (PAS+) macrophages. Ex vivo MTR and relaxation times correlated positively with the number of PAS-positive macrophages. None of the investigated MRI parameters correlated with axonal density.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/nbm.1085DOI Listing
April 2007

MRI-guided immunotherapy development for multiple sclerosis in a primate.

Drug Discov Today 2006 Jan;11(1-2):58-66

Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.

Multiple sclerosis is a serious neurological disease that affects 1 in 1000 young adults in Europe and the USA. The development of an effective therapy for this enigmatic disease is plagued by the failure of many treatments to reproduce in patients the promising effects observed in animal models. This review describes a new preclinical model in a non-human primate that might help to bridge the gap between currently used animal models and the patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1359-6446(05)03673-1DOI Listing
January 2006

Suppression of ongoing disease in a nonhuman primate model of multiple sclerosis by a human-anti-human IL-12p40 antibody.

J Immunol 2005 Oct;175(7):4761-8

Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, The Netherlands.

IL-12p40 is a shared subunit of two cytokines with overlapping activities in the induction of autoreactive Th1 cells and therefore a potential target of therapy in Th1-mediated diseases. We have examined whether ongoing disease in a nonhuman primate model of multiple sclerosis (MS) can be suppressed with a new human IgG1kappa Ab against human IL-12p40. Lesions developing in the brain white matter were visualized and characterized with standard magnetic resonance imaging techniques. To reflect the treatment of MS patients, treatment with the Ab was initiated after active brain white matter lesions were detected in T2-weighted images. In placebo-treated control monkeys we observed the expected progressive increase in the total T2 lesion volume and markedly increased T2 relaxation times, a magnetic resonance imaging marker of inflammation. In contrast, in monkeys treated with anti-IL-12p40 Ab, changes in the total T2 lesion volume and T2 relaxation times were significantly suppressed. Moreover, the time interval to serious neurological deficit was delayed from 31 +/- 10 to 64 +/- 20 days (odds ratio, 0.312). These results, in a disease model with high similarity to MS, are important for ongoing and planned trials of therapies that target IL-12 and/or IL-23.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.175.7.4761DOI Listing
October 2005

Treatment with chimeric anti-human CD40 antibody suppresses MRI-detectable inflammation and enlargement of pre-existing brain lesions in common marmosets affected by MOG-induced EAE.

J Neuroimmunol 2005 Jun 9;163(1-2):31-9. Epub 2005 Apr 9.

Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, The Netherlands.

Common marmosets, a Neotropical monkey species, are protected against clinical and neuropathological consequences of experimentally induced autoimmune encephalomyelitis (EAE) by prophylactic treatment with ch5D12, a humanized antagonist antibody against human CD40. In the current study we have tested whether ch5D12 acts therapeutically against the enlargement and inflammatory activity of existing (brain) white matter lesions using serial magnetic resonance imaging (MRI). The results show in all PBS treated monkeys (n=4) a rapid enlargement of T2 lesions together with an increment of the T2 signal intensity due to inflammatory edema. Treatment with ch5D12 delayed the enlargement of T2 lesions in 2 out of 3 tested monkeys while in 3 out of 3 monkeys the T2 signal increment of lesions was suppressed. In conjunction with previously published data on the clinical benefit of anti-CD40 treatment in the marmoset EAE model, the current findings support antibody-mediated blockade of CD40 interaction with its ligand CD154 as a potential treatment of MS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneuroim.2005.02.005DOI Listing
June 2005

The spinal cord in multiple sclerosis: relationship of high-spatial-resolution quantitative MR imaging findings to histopathologic results.

Radiology 2004 Nov 22;233(2):531-40. Epub 2004 Sep 22.

Department of Radiology, VU Medical Center, PO Box 7057, 1007 MB Amsterdam, the Netherlands.

Purpose: To correlate quantitative magnetic resonance (MR) imaging data (ie, relaxation times and magnetization transfer ratios [MTRs]) with histopathologic findings of demyelination and axonal disease in cervical spinal cord specimens from patients with multiple sclerosis (MS) and control subjects.

Materials And Methods: Formaldehyde-fixed cervical spinal cord specimens from 11 patients with MS-three men and eight women (mean age at death, 66 years +/- 11.3 [standard deviation])-and two female control subjects without neurologic disease (83 and 41 years of age at death) were examined at 4.7 T. Relaxation time measurements and MTR mapping were performed. Analyses included the whole cord area and region-of-interest measurements. Histopathologic analyses included semiquantitative myelin and quantitative axonal analysis.

Results: Compared with control specimens (P < .001, analysis of variance), specimens from patients with MS had smaller cord areas (mean area, 59.0 mm(2) +/- 12.5 vs 72.7 mm(2) +/- 10.0), significant prolongation of T1 (mean prolongation, 30%) and T2 (mean prolongation, 13%), and decreased MTRs (mean, 10.5%). Within MS specimens, 58% of the white matter area displayed signal intensity abnormalities on intermediate-weighted MR images. The number of axons in normal-appearing white matter in MS specimens was, on average, 46% lower than the number of axons in white matter in control specimens. All quantitative MR parameters correlated well with demyelination; the correlation with T2 relaxation time was the strongest (r = 0.77, Spearman and Kendall nonparametric correlations). By contrast, quantitative MR parameters correlated less well with axonal density; the correlation with T2 relaxation time was the strongest (r = -0.44, Spearman and Kendall nonparametric correlations). Multilevel analysis, corrected for age and MS phenotype, could not result in a model explaining axonal density on the basis of quantitative MR parameters when myelin density was included as a predictor.

Conclusion: Changes in quantitative MR imaging parameters in the cervical spinal cord in MS are mainly determined by demyelination and do not reflect axonal disease well.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.2332031572DOI Listing
November 2004
-->