Publications by authors named "Erlinda Quijano"

7 Publications

  • Page 1 of 1

Inefficient killing of quiescent human epithelial cells by replicating adenoviruses: potential implications for their use as oncolytic agents.

Cancer Gene Ther 2005 Aug;12(8):691-8

Canji Inc., San Diego, California, USA.

Cultured primary human cells have been widely used to assess the selectivity of oncolytic viruses as potential anticancer agents. As culture conditions can potentially have a significant impact on virus replication and ultimately cell killing, we evaluated the effects of dl309, a wild-type adenovirus, and dl01 / 07, a conditionally replicating adenovirus mutant, on quiescent and proliferating primary mammary epithelial cells. When primary cells were induced into quiescence, both viruses exhibited similar attenuated cell killing. However, cell killing by dl309 was superior to dl01 / 07 in proliferating primary cells. Analysis of viral effects at the level of entry, E2F activation, DNA replication, and late gene expression indicated that attenuation of dl309 in quiescent cells correlated with decreased expression of viral late genes such as hexon. In contrast, attenuation of dl01 / 07 in quiescent cells correlated with inefficient induction of E2F activity and inability to undergo efficient DNA replication. In proliferating cells, dl309 replicated efficiently, whereas dl01 / 07 still showed attenuated replication. In summary, our results indicate the intrinsic preference of wild-type adenoviruses for killing proliferating cells, which is an attractive feature for using adenoviruses as oncolytic agents. These results also highlight the need for the use of appropriate growth conditions for primary cells in vitro to distinguish subtle differences in cell killing among various oncolytic viruses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.cgt.7700840DOI Listing
August 2005

Acute hepatotoxicity of oncolytic adenoviruses in mouse models is associated with expression of wild-type E1a and induction of TNF-alpha.

Virology 2004 Oct;328(1):52-61

Canji, Inc., 3525 John Hopkins Court, San Diego, CA 92121, USA.

Replication competent adenoviruses with various E1 modifications designed to restrict their replication to tumor cells are being evaluated as oncolytic agents in clinical trials. In mouse models, we observed that such oncolytic adenoviruses showed greater hepatotoxicity than E1-deleted adenovirus vectors following intravenous administration. Additional studies in congenic BALB/c, nude, and beige/Scid mice demonstrated dose-dependent hepatotoxicity and indicated that beige/Scid was the most sensitive strain. Comparison of E1-containing viruses showed that hepatotoxicity correlated with expression of wild-type E1a in the liver. Pharmacokinetic analysis showed rapid increases in viral DNA levels in the liver with a virus containing wild-type E1a. This was correlated with rapid induction of TNF-alpha to high levels and with rapid elevation of serum ALT. Hepatotoxicity was significantly reduced for an adenovirus with deletions in the region E1a (dl01/07) or a virus lacking E1a. The results suggest a mechanism for hepatotoxicity involving virus-induced production of local TNF-alpha release and E1a-mediated sensitization of hepatocyte killing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virol.2004.06.043DOI Listing
October 2004

Cyclodextrin-modified polyethylenimine polymers for gene delivery.

Bioconjug Chem 2004 Jul-Aug;15(4):831-40

Insert Therapeutics Inc., 2585 Nina Street, Pasadena, California 91107, USA.

Linear and branched poly(ethylenimines), lPEI and bPEI, respectively, grafted with beta-cyclodextrin are prepared to give CD-lPEI and CD-bPEI, respectively, and are investigated as in vitro and in vivo nonviral gene delivery agents. The in vitro toxicity and transfection efficiency are sensitive to the level of cyclodextrin grafting. The cyclodextrin-containing polycations, when combined with adamantane-poly(ethylene glycol) (AD-PEG) conjugates, form particles that are stable at physiological salt concentrations. PEGylated CD-lPEI-based particles give in vitro gene expression equal to or greater than lPEI as measured by the percentage of EGFP expressing cells. Tail vein injections into mice of 120 microg of plasmid DNA formulated with CD-lPEI and AD-PEG do not reveal observable toxicities, and both nucleic acid accumulation and expression are observed in liver.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bc049891gDOI Listing
January 2005

Pharmacologic indicators of antitumor efficacy for oncolytic virotherapy.

Cancer Res 2003 Jul;63(14):4003-8

Canji, Inc., San Diego, California 92121, USA.

Central to the development of oncolytic virotherapies for cancer will be a better understanding of the parameters that influence the outcome of virotherapy to treat disseminated cancer by i.v. administration versus regional disease by local treatment. Intratumoral administration of 01/PEME, an oncolytic adenovirus, required approximately 1000-fold less dose than i.v. administration to induce similar tumor growth inhibition. Despite the short (<10 min) circulating half-life of the virus DNA, we could monitor virus distribution to the tumor site and observed virus replication by >1000-fold increase in virus DNA copies over time. There were doses of 01/PEME for which the virus DNA concentration in the tumor increased over time but did not result in antitumor efficacy. Oncolytic virus replication at a tumor site may not be a relevant indication of antitumor efficacy. Efficient distribution to the tumor site may be one of the most critical parameters for antitumor efficacy with oncolytic virotherapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
July 2003

Development of a formulation that enhances gene expression and efficacy following intraperitoneal administration in rabbits and mice.

Mol Ther 2003 Apr;7(4):558-64

Canji, Inc., 3525 John Hopkins Court, San Diego, CA 92121, USA.

We conducted a series of experiments to determine if intraperitoneal (IP) delivery of recombinant adenovirus (rAd)-based therapies is improved through carrier vehicle selection, and compared an icodextrin solution (a high molecular weight dextrin with a prolonged peritoneal cavity residence time) with a standardized phosphate buffered saline (PBS) delivery solution. In vitro, comparative adenovirus particle concentration determination (27 h) and bioactivity assay (24h) indicated equivalent compatibility with icodextrin or PBS. In vivo, rabbits treated IP (100 ml) with rAd-betagal 1 x 10(9) P/ml in icodextrin showed improved transgene expression throughout the peritoneal wall compared to rAd-betagal in PBS. In PC-3 tumor-bearing mice treated IP with 5 x 10(9) P/0.5 ml or 1 x 10(10) P/0.5 ml rAd-betagal, transgene expression was significantly enhanced (p < 0.01) with icodextrin compared to PBS in both tumor specimens and peritoneal wall. In subsequent studies we compared prolongation of survival in intraperitoneal PC-3 and MDAH-2774 human xenograft tumor models in nude mice using rAd-p53 in icodextrin or PBS in multi-dose ranging (1 x 10(8) to 1 x 10(10) P) experiments. The icodextrin formulation alone significantly increased rAd-p53 mediated survival (p < 0.05). In animals, these results show that IP rAd gene therapy can be improved with the use of icodextrin, and suggest that prolonged retention and distribution in the peritoneal cavity is an important factor.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1525-0016(03)00057-1DOI Listing
April 2003

Assessment of p53 gene transfer and biological activities in a clinical study of adenovirus-p53 gene therapy for recurrent ovarian cancer.

Cancer Gene Ther 2003 Mar;10(3):224-38

Canji, Inc., San Diego, California 92121, USA.

A cohort study was designed to evaluate the efficiency of gene transfer and whether biological activity from the expressed therapeutic gene resulted after administration of a recombinant adenovirus containing the human wild-type p53 (p53(wt)) gene (rAd-p53 SCH 58500). The cohort study was conducted in five trial subjects with recurrent ovarian cancer. Each trial subject received multiple cycles of rAd-p53 SCH 58500, each cycle comprised of doses of 7.5 x 10(13) particles on each of five consecutive days. Subjects were treated with rAd-p53 SCH 58500 alone during Cycle 1 and in combination with gemcitabine during the subsequent cycles. Both tumor biopsies and peritoneal aspirates were collected and evaluated for gene transfer and evidence of the biological activities of the expressed p53(wt) gene. Using quantitative PCR and RT-PCR, and in situ PCR, gene transfer and expression were documented in tumor biopsies (four of five patients) collected from Cycle 1. Furthermore, upregulation of p21/WAF1, bax and mdm-2, and downregulation of survivin were observed in these same tumor biopsy samples, suggesting that intraperitoneal administration of rAd-p53 SCH 58500 leads to detectable p53 biological activity in target tumor tissue. In addition, gene transfer and its expression were observed in cells obtained from peritoneal aspirates. These fluids were mainly comprised of polymorphonuclear neutrophils, indicating that successful gene transfer can be achieved by multiple cycle intraperitoneal administration of recombinant adenovirus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.cgt.7700562DOI Listing
March 2003

Successful adenovirus-mediated wild-type p53 gene transfer in patients with bladder cancer by intravesical vector instillation.

J Clin Oncol 2002 Feb;20(4):957-65

Department of Medicine III, Johannes Gutenberg University, Mainz, Germany.

Purpose: To study safety, feasibility, and biologic activity of adenovirus-mediated p53 gene transfer in patients with bladder cancer.

Patients And Methods: Twelve patients with histologically confirmed bladder cancer scheduled for cystectomy were treated on day 1 with a single intratumoral injection of SCH 58500 (rAd/p53) at cystoscopy at one dose level (7.5 x 10(11) particles) or a single intravesical instillation of SCH 58500 with a transduction-enhancing agent (Big CHAP) at three dose levels (7.5 x 10(11) to 7.5 x 10(13) particles). Cystectomies were performed in 11 patients on day 3, and transgene expression, vector distribution, and biologic markers of transgene activity were assessed by molecular and immunohistochemical methods in tumors and normal bladder samples.

Results: Specific transgene expression was detected in tissues from seven of eight assessable patients treated with intravesical instillation of SCH 58500 but in none of three assessable patients treated with intratumoral injection of SCH 58500. Induction of RNA and protein expression of the p53 target gene p21/WAF1 was demonstrated in samples from patients treated with SCH 58500 instillation at higher dose levels. Distribution studies after intravesical instillation of SCH 58500 revealed both high transduction efficacy and vector penetration throughout the whole urothelium and into submucosal tumor cells. No dose-limiting toxicity was observed, and side effects were local and of transient nature.

Conclusion: Intravesical instillation of SCH 58500 combined with a transduction-enhancing agent is safe, feasible, and biologically active in patients with bladder cancer. Studies to evaluate the clinical efficacy of this treatment in patients with localized high-risk bladder cancer are warranted.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1200/JCO.2002.20.4.957DOI Listing
February 2002
-->