Publications by authors named "Erin B Ware"

65 Publications

Mendelian Randomization of Dyslipidemia on Cognitive Impairment Among Older Americans.

Front Neurol 2021 23;12:660212. Epub 2021 Jun 23.

Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States.

Altered lipid metabolism may be a risk factor for dementia, and blood cholesterol level has a strong genetic component. We tested the hypothesis that dyslipidemia (either low levels of high-density lipoprotein cholesterol (HDL-C) or high total cholesterol) is associated with cognitive status and domains, and assessed causality using genetic predisposition to dyslipidemia as an instrumental variable. Using data from European and African genetic ancestry participants in the Health and Retirement Study, we selected observations at the first non-missing biomarker assessment (waves 2006-2012). Cognition domains were assessed using episodic memory, mental status, and vocabulary tests. Overall cognitive status was categorized in three levels (normal, cognitive impairment non-dementia, dementia). Based on 2018 clinical guidelines, we compared low HDL-C or high total cholesterol to normal levels. Polygenic scores for dyslipidemia were used as instrumental variables in a Mendelian randomization framework. Multivariable logistic regressions and Wald-type ratio estimators were used to examine associations. Among European ancestry participants ( = 8,781), at risk HDL-C levels were associated with higher odds of cognitive impairment (OR = 1.20, 95% CI: 1.03, 1.40) and worse episodic memory, specifically. Using cumulative genetic risk for HDL-C levels as a valid instrumental variable, a significant causal estimate was observed between at risk low HDL-C levels and higher odds of dementia (OR = 2.15, 95% CI: 1.16, 3.99). No significant associations were observed between total cholesterol levels and cognitive status. No significant associations were observed in the African ancestry sample ( = 2,101). Our study demonstrates low blood HDL-C is a potential causal risk factor for impaired cognition during aging in non-Hispanic whites of European ancestry. Dyslipidemia can be modified by changing diets, health behaviors, and therapeutic strategies, which can improve cognitive aging. Studies on low density lipoprotein cholesterol, the timing of cholesterol effects on cognition, and larger studies in non-European ancestries are needed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fneur.2021.660212DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260932PMC
June 2021

A multi-ethnic epigenome-wide association study of leukocyte DNA methylation and blood lipids.

Nat Commun 2021 06 28;12(1):3987. Epub 2021 Jun 28.

Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA.

Here we examine the association between DNA methylation in circulating leukocytes and blood lipids in a multi-ethnic sample of 16,265 subjects. We identify 148, 35, and 4 novel associations among Europeans, African Americans, and Hispanics, respectively, and an additional 186 novel associations through a trans-ethnic meta-analysis. We observe a high concordance in the direction of effects across racial/ethnic groups, a high correlation of effect sizes between high-density lipoprotein and triglycerides, a modest overlap of associations with epigenome-wide association studies of other cardio-metabolic traits, and a largely non-overlap with lipid loci identified to date through genome-wide association studies. Thirty CpGs reached significance in at least 2 racial/ethnic groups including 7 that showed association with the expression of an annotated gene. CpGs annotated to CPT1A showed evidence of being influenced by triglycerides levels. DNA methylation levels of circulating leukocytes show robust and consistent association with blood lipid levels across multiple racial/ethnic groups.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-23899-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8238961PMC
June 2021

The Effect of Childhood Socioeconomic Position and Social Mobility on Cognitive Function and Change Among Older Adults: A Comparison Between the United States and England.

J Gerontol B Psychol Sci Soc Sci 2021 06;76(Suppl 1):S51-S63

Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor.

Objectives: This study aims to examine the relationship between childhood socioeconomic position (SEP) and cognitive function in later life within nationally representative samples of older adults in the United States and England, investigate whether these effects are mediated by later-life SEP, and determine whether social mobility from childhood to adulthood affects cognitive function and decline.

Method: Using data from the Health and Retirement Study (HRS) and the English Longitudinal Survey of Ageing (ELSA), we examined the relationships between measures of SEP, cognitive performance and decline using individual growth curve models.

Results: High childhood SEP was associated with higher cognitive performance at baseline in both cohorts and did not affect the rate of decline. This benefit dissipated after adjusting for education and adult wealth in the United States. Respondents with low childhood SEP, above median education, and high adult SEP had better cognitive performance at baseline than respondents with a similar childhood background and less upward mobility in both countries.

Discussion: These findings emphasize the impact of childhood SEP on cognitive trajectories among older adults. Upward mobility may partially compensate for disadvantage early in life but does not protect against cognitive decline.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/geronb/gbaa138DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8186857PMC
June 2021

Phenotypic and genetic markers of psychopathology in a population-based sample of older adults.

Transl Psychiatry 2021 04 24;11(1):239. Epub 2021 Apr 24.

Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.

Although psychiatric phenotypes are hypothesized to organize into a two-factor internalizing-externalizing structure, few studies have evaluated the structure of psychopathology in older adults, nor explored whether genome-wide polygenic scores (PGSs) are associated with psychopathology in a domain-specific manner. We used data from 6003 individuals of European ancestry from the Health and Retirement Study, a large population-based sample of older adults in the United States. Confirmatory factor analyses were applied to validated measures of psychopathology and PGSs were derived from well-powered genome-wide association studies (GWAS). Genomic SEM was implemented to construct latent PGSs for internalizing, externalizing, and general psychopathology. Phenotypically, the data were best characterized by a single general factor of psychopathology, a factor structure that was replicated across genders and age groups. Although externalizing PGSs (cannabis use, antisocial behavior, alcohol dependence, attention deficit hyperactivity disorder) were not associated with any phenotypes, PGSs for major depressive disorder, neuroticism, and anxiety disorders were associated with both internalizing and externalizing phenotypes. Moreover, the variance explained in the general factor of psychopathology increased by twofold (from 1% to 2%) using the latent internalizing or latent one-factor PGSs, derived using weights from Genomic Structural Equation Modeling (SEM), compared with any of the individual PGSs. Collectively, results suggest that genetic risk factors for and phenotypic markers of psychiatric disorders are transdiagnostic in older adults of European ancestry. Alternative explanations are discussed, including methodological limitations of GWAS and phenotypic measurement of psychiatric outcome in large-scale population-based studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-021-01354-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8068727PMC
April 2021

Type 2 Diabetes and Cognitive Status in the Health and Retirement Study: A Mendelian Randomization Approach.

Front Genet 2021 25;12:634767. Epub 2021 Mar 25.

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States.

Background: Type 2 diabetes mellitus (T2DM) and dementia are leading causes of mortality and disability in the US. T2DM has been associated with dementia; however, causality has not been clearly established. This study tested inferred causality between T2DM and dementia status using a Mendelian randomization approach.

Methods: Participants (50+ years) from the 2010 wave of the Health and Retirement Study of European or African genetic ancestry were included ( = 10,322). History of T2DM was self-reported. Cognitive status (dementia, cognitive impairment non-dementia, or normal cognition) was defined from clinically validated cognitive assessments. Cumulative genetic risk for T2DM was determined using a polygenic score calculated from a European ancestry T2DM genome-wide association study by Xue et al. (2018). All models were adjusted for age, sex, education, -ε4 carrier status, and genetic principal components. Multivariable logistic regression was used to test the association between cumulative genetic risk for T2DM and cognitive status. To test inferred causality using Mendelian randomization, we used the inverse variance method.

Results: Among included participants, 20.9% had T2DM and 20.7% had dementia or cognitive impairment. Among European ancestry participants, T2DM was associated with 1.66 times odds of cognitive impairment non-dementia (95% confidence interval: 1.55-1.77) relative to normal cognition. A one standard deviation increase in cumulative genetic risk for T2DM was associated with 1.30 times higher odds of T2DM (95% confidence interval: 1.10-1.52). Cumulative genetic risk for T2DM was not associated with dementia status or cognitive-impaired non-dementia in either ancestry ( > 0.05); lack of association here is an important assumption of Mendelian randomization. Using Mendelian randomization, we did not observe evidence for an inferred causal association between T2DM and cognitive impairment (odds ratio: 1.04; 95% confidence interval: 0.90-1.21).

Discussion: Consistent with prior research, T2DM was associated with cognitive status. Prevention of T2DM and cognitive decline are both critical for public health, however, this study does not provide evidence that T2DM is causally related to impaired cognition. Additional studies in other ancestries, larger sample sizes, and longitudinal studies are needed to confirm these results.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fgene.2021.634767DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8044888PMC
March 2021

Discovery and fine-mapping of height loci via high-density imputation of GWASs in individuals of African ancestry.

Am J Hum Genet 2021 04 12;108(4):564-582. Epub 2021 Mar 12.

The Charles R. Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

Although many loci have been associated with height in European ancestry populations, very few have been identified in African ancestry individuals. Furthermore, many of the known loci have yet to be generalized to and fine-mapped within a large-scale African ancestry sample. We performed sex-combined and sex-stratified meta-analyses in up to 52,764 individuals with height and genome-wide genotyping data from the African Ancestry Anthropometry Genetics Consortium (AAAGC). We additionally combined our African ancestry meta-analysis results with published European genome-wide association study (GWAS) data. In the African ancestry analyses, we identified three novel loci (SLC4A3, NCOA2, ECD/FAM149B1) in sex-combined results and two loci (CRB1, KLF6) in women only. In the African plus European sex-combined GWAS, we identified an additional three novel loci (RCCD1, G6PC3, CEP95) which were equally driven by AAAGC and European results. Among 39 genome-wide significant signals at known loci, conditioning index SNPs from European studies identified 20 secondary signals. Two of the 20 new secondary signals and none of the 8 novel loci had minor allele frequencies (MAF) < 5%. Of 802 known European height signals, 643 displayed directionally consistent associations with height, of which 205 were nominally significant (p < 0.05) in the African ancestry sex-combined sample. Furthermore, 148 of 241 loci contained ≤20 variants in the credible sets that jointly account for 99% of the posterior probability of driving the associations. In summary, trans-ethnic meta-analyses revealed novel signals and further improved fine-mapping of putative causal variants in loci shared between African and European ancestry populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.02.011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059339PMC
April 2021

Cumulative Genetic Risk and Are Independently Associated With Dementia Status in a Multiethnic, Population-Based Cohort.

Neurol Genet 2021 Apr 5;7(2):e576. Epub 2021 Mar 5.

Department of Epidemiology (K.M.B., S.L.R.K., J.A.S.), School of Public Health, University of Michigan; Survey Research Center (H.S.V., J.D.F., S.G.H., K.M.L., C.M.M., E.B.W.), Institute for Social Research, University of Michigan; VA Center for Clinical Management Research (K.M.L.), Ann Arbor, MI; Department of Neurology (J.J.M.), Columbia University, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (J.J.M.), New York; and Department of Mental Health (K.S.B.), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD.

Objective: Alzheimer disease (AD) is a common and costly neurodegenerative disorder. A large proportion of AD risk is heritable, and many genetic risk factors have been identified. The objective of this study was to test the hypothesis that cumulative genetic risk of known AD markers contributed to odds of dementia in a population-based sample.

Methods: In the US population-based Health and Retirement Study (waves 1995-2014), we evaluated the role of cumulative genetic risk of AD, with and without the alleles, on dementia status (dementia, cognitive impairment without dementia, borderline cognitive impairment without dementia, and cognitively normal). We used logistic regression, accounting for demographic covariates and genetic principal components, and analyses were stratified by European and African genetic ancestry.

Results: In the European ancestry sample (n = 8,399), both AD polygenic score excluding the genetic region (odds ratio [OR] = 1.10; 95% confidence interval [CI]: 1.00-1.20) and the presence of any alleles (OR = 2.42; 95% CI: 1.99-2.95) were associated with the odds of dementia relative to normal cognition in a mutually adjusted model. In the African ancestry sample (n = 1,605), the presence of any alleles was associated with 1.77 (95% CI: 1.20-2.61) times higher odds of dementia, whereas the AD polygenic score excluding the genetic region was not significantly associated with the odds of dementia relative to normal cognition 1.06 (95% CI: 0.97-1.30).

Conclusions: Cumulative genetic risk of AD and are both independent predictors of dementia in European ancestry. This study provides important insight into the polygenic nature of dementia and demonstrates the utility of polygenic scores in dementia research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/NXG.0000000000000576DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7938646PMC
April 2021

Saliva cell type DNA methylation reference panel for epidemiological studies in children.

Epigenetics 2021 Feb 22:1-17. Epub 2021 Feb 22.

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.

Saliva is a widely used biological sample, especially in pediatric research, containing a heterogenous mixture of immune and epithelial cells. Associations of exposure or disease with saliva DNA methylation can be influenced by cell-type proportions. Here, we developed a saliva cell-type DNA methylation reference panel to estimate interindividual cell-type heterogeneity in whole saliva studies. Saliva was collected from 22 children (7-16 years) and sorted into immune and epithelial cells, using size exclusion filtration and magnetic bead sorting. DNA methylation was measured using the Illumina MethylationEPIC BeadChip. We assessed cell-type differences in DNA methylation profiles and tested for enriched biological pathways. Immune and epithelial cells differed at 181,577 (22.8%) DNA methylation sites (t-test p < 6.28 × 10). Immune cell hypomethylated sites are mapped to genes enriched for immune pathways (p < 3.2 × 10). Epithelial cell hypomethylated sites were enriched for cornification (p = 5.2 × 10), a key process for hard palette formation. Saliva immune and epithelial cells have distinct DNA methylation profiles which can drive whole-saliva DNA methylation measures. A primary saliva DNA methylation reference panel, easily implemented with an R package, will allow estimates of cell proportions from whole saliva samples and improve epigenetic epidemiology studies by accounting for measurement heterogeneity by cell-type proportions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/15592294.2021.1890874DOI Listing
February 2021

Considering the APOE locus in Alzheimer's disease polygenic scores in the Health and Retirement Study: a longitudinal panel study.

BMC Med Genomics 2020 11 3;13(1):164. Epub 2020 Nov 3.

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA.

Background: Polygenic scores are a strategy to aggregate the small, additive effects of single nucleotide polymorphisms across the genome. With phenotypes like Alzheimer's disease, which have a strong and well-established genomic locus (APOE), the cumulative effect of genetic variants outside of this area has not been well established in a population-representative sample.

Methods: Here we examine the association between polygenic scores for Alzheimer's disease both with and without the APOE region (chr19: 45,384,477 to 45,432,606, build 37/hg 19) at different P value thresholds and dementia. We also investigate the addition of APOE-ε4 carrier status and its effect on the polygenic score-dementia association in the Health and Retirement Study using generalized linear models accounting for repeated measures by individual and use a binomial distribution, logit link, and unstructured correlation structure.

Results: In a large sample of European ancestry participants of the Health and Retirement Study (n = 9872) with an average of 5.2 (standard deviation 1.8) visit spaced two years apart, we found that including the APOE region through weighted variants in a polygenic score was insufficient to capture the large amount of risk attributed to this region. We also found that a polygenic score with a P value threshold of 0.01 had the strongest association with the odds of dementia in this sample (odds ratio = 1.10 95%CI 1.0 to 1.2).

Conclusion: We recommend removing the APOE region from polygenic score calculation and treating the APOE locus as an independent covariate when modeling dementia. We also recommend using a moderately conservative P value threshold (e.g. 0.01) when creating polygenic scores for Alzheimer's disease on dementia. These recommendations may help elucidate relationships between polygenic scores and regions of strong significance for phenotypes similar to Alzheimer's disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12920-020-00815-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7607711PMC
November 2020

A data-driven prospective study of dementia among older adults in the United States.

PLoS One 2020 7;15(10):e0239994. Epub 2020 Oct 7.

School of Medicine, Stanford University, Palo Alto, California, United States of America.

Background: Studies examining risk factors for dementia have typically focused on testing a priori hypotheses within specific risk factor domains, leaving unanswered the question of what risk factors across broad and diverse research fields may be most important to predicting dementia. We examined the relative importance of 65 sociodemographic, early-life, economic, health and behavioral, social, and genetic risk factors across the life course in predicting incident dementia and how these rankings may vary across racial/ethnic (non-Hispanic white and black) and gender (men and women) groups.

Methods And Findings: We conducted a prospective analysis of dementia and its association with 65 risk factors in a sample of 7,908 adults aged 51 years and older from the nationally representative US-based Health and Retirement Study. We used traditional survival analysis methods (Fine and Gray models) and a data-driven approach (random survival forests for competing risks) which allowed us to account for the semi-competing risk of death with up to 14 years of follow-up. Overall, the top five predictors across all groups were lower education, loneliness, lower wealth and income, and lower self-reported health. However, we observed variation in the leading predictors of dementia across racial/ethnic and gender groups such that at most four risk factors were consistently observed in the top ten predictors across the four demographic strata (non-Hispanic white men, non-Hispanic white women, non-Hispanic black men, non-Hispanic black women).

Conclusions: We identified leading risk factors across racial/ethnic and gender groups that predict incident dementia over a 14-year period among a nationally representative sample of US aged 51 years and older. Our ranked lists may be useful for guiding future observational and quasi-experimental research that investigates understudied domains of risk and emphasizes life course economic and health conditions as well as disparities therein.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239994PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540891PMC
December 2020

Genome-Wide Association Meta-Analysis of Individuals of European Ancestry Identifies Suggestive Loci for Sodium Intake, Potassium Intake, and Their Ratio Measured from 24-Hour or Half-Day Urine Samples.

J Nutr 2020 10;150(10):2635-2645

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.

Background: Excess sodium intake and insufficient potassium intake are risk factors for hypertension, but there is limited knowledge regarding genetic factors that influence intake. Twenty-hour or half-day urine samples provide robust estimates of sodium and potassium intake, outperforming other measures such as spot urine samples and dietary self-reporting.

Objective: The aim of this study was to investigate genomic regions associated with sodium intake, potassium intake, and sodium-to-potassium ratio measured from 24-h or half-day urine samples.

Methods: Using samples of European ancestry (mean age: 54.2 y; 52.3% women), we conducted a meta-analysis of genome-wide association studies in 4 cohorts with 24-h or half-day urine samples (n = 6,519), followed by gene-based analysis. Suggestive loci (P < 10-6) were examined in additional European (n = 844), African (n = 1,246), and Asian (n = 2,475) ancestry samples.

Results: We found suggestive loci (P < 10-6) for all 3 traits, including 7 for 24-h sodium excretion, 4 for 24-h potassium excretion, and 4 for sodium-to-potassium ratio. The most significant locus was rs77958157 near cocaine- and amphetamine-regulated transcript prepropeptide (CARTPT) , a gene involved in eating behavior and appetite regulation (P = 2.3 × 10-8 with sodium-to-potassium ratio). Two suggestive loci were replicated in additional samples: for sodium excretion, rs12094702 near zinc finger SWIM-type containing 5 (ZSWIM5) was replicated in the Asian ancestry sample reaching Bonferroni-corrected significance (P = 0.007), and for potassium excretion rs34473523 near sodium leak channel (NALCN) was associated at a nominal P value with potassium excretion both in European (P = 0.043) and African (P = 0.043) ancestry cohorts. Gene-based tests identified 1 significant gene for sodium excretion, CDC42 small effector 1 (CDC42SE1), which is associated with blood pressure regulation.

Conclusions: We identified multiple suggestive loci for sodium and potassium intake near genes associated with eating behavior, nervous system development and function, and blood pressure regulation in individuals of European ancestry. Further research is needed to replicate these findings and to provide insight into the underlying genetic mechanisms by which these genomic regions influence sodium and potassium intake.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jn/nxaa241DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7549298PMC
October 2020

Social regulation of inflammation related gene expression in the multi-ethnic study of atherosclerosis.

Psychoneuroendocrinology 2020 07 7;117:104654. Epub 2020 May 7.

Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, United States. Electronic address:

Background: Exposure to adverse social factors has been associated with an altered inflammatory profile, a risk factor for several acute and chronic diseases. Differential gene expression may be a biological mediator in the relationship. In this study, associations between a range of social factors and expression of inflammation-related genes were investigated.

Methods: Social factor and gene expression data were collected from 1,264 individuals in the Multi-Ethnic Study of Atherosclerosis (MESA). Inflammation-related genes were identified from the Gene Ontology database. The associations between social factors and gene expression were first assessed using the Global Analysis of Covariance (Global ANCOVA) gene set enrichment test. When the global test was significant, linear regression and elastic net penalized regression were employed to identify the individual gene transcripts within each gene set associated with the social factor.

Results: Loneliness (p = 0.003), chronic burden (p = 0.002), and major or lifetime discrimination (p = 0.045) were significantly associated with global expression of the chronic inflammatory gene set. Of the 20 transcripts that comprise this gene set, elastic net selected 12 transcripts for loneliness, 8 for chronic burden, and 3 for major or lifetime discrimination. Major or lifetime discrimination was also associated with the inflammatory response (p = 0.029), regulation of the inflammatory response (p = 0.041), and immune response (p = 0.025) gene sets in global analyses, and 53, 136, and 26 transcripts were selected via elastic net for these gene sets respectively. There were no significant associations in linear regression analyses after adjustment for multiple testing.

Conclusions: This study highlights gene expression as a biological mechanism through which social factors may affect inflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.psyneuen.2020.104654DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7685527PMC
July 2020

Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci.

Mol Psychiatry 2021 06 5;26(6):2111-2125. Epub 2020 May 5.

Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.

Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, "Some College" (yes/no) and "Graduated College" (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 × 10). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-020-0719-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641978PMC
June 2021

An epigenome-wide association study of posttraumatic stress disorder in US veterans implicates several new DNA methylation loci.

Clin Epigenetics 2020 03 14;12(1):46. Epub 2020 Mar 14.

Arq, Psychotrauma Reseach Expert Group, Diemen, NH, Netherlands.

Background: Previous studies using candidate gene and genome-wide approaches have identified epigenetic changes in DNA methylation (DNAm) associated with posttraumatic stress disorder (PTSD).

Methods: In this study, we performed an EWAS of PTSD in a cohort of Veterans (n = 378 lifetime PTSD cases and 135 controls) from the Translational Research Center for TBI and Stress Disorders (TRACTS) cohort assessed using the Illumina EPIC Methylation BeadChip which assesses DNAm at more than 850,000 sites throughout the genome. Our model included covariates for ancestry, cell heterogeneity, sex, age, and a smoking score based on DNAm at 39 smoking-associated CpGs. We also examined in EPIC-based DNAm data generated from pre-frontal cortex (PFC) tissue from the National PTSD Brain Bank (n = 72).

Results: The analysis of blood samples yielded one genome-wide significant association with PTSD at cg19534438 in the gene G0S2 (p = 1.19 × 10, p = 0.048). This association was replicated in an independent PGC-PTSD-EWAS consortium meta-analysis of military cohorts (p = 0.0024). We also observed association with the smoking-related locus cg05575921 in AHRR despite inclusion of a methylation-based smoking score covariate (p = 9.16 × 10), which replicates a previously observed PGC-PTSD-EWAS association (Smith et al. 2019), and yields evidence consistent with a smoking-independent effect. The top 100 EWAS loci were then examined in the PFC data. One of the blood-based PTSD loci, cg04130728 in CHST11, which was in the top 10 loci in blood, but which was not genome-wide significant, was significantly associated with PTSD in brain tissue (in blood p = 1.19 × 10, p = 0.60, in brain, p = 0.00032 with the same direction of effect). Gene set enrichment analysis of the top 500 EWAS loci yielded several significant overlapping GO terms involved in pathogen response, including "Response to lipopolysaccharide" (p = 6.97 × 10, p = 0.042).

Conclusions: The cross replication observed in independent cohorts is evidence that DNA methylation in peripheral tissue can yield consistent and replicable PTSD associations, and our results also suggest that that some PTSD associations observed in peripheral tissue may mirror associations in the brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13148-020-0820-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071645PMC
March 2020

Genome-wide Association Study of 24-Hour Urinary Excretion of Calcium, Magnesium, and Uric Acid.

Mayo Clin Proc Innov Qual Outcomes 2019 Dec 22;3(4):448-460. Epub 2019 Nov 22.

Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN.

Objectives: The urinary excretion of organic and inorganic substances and their concentrations have attracted extensive attention for their role in the pathogenesis of urinary stone disease. The urinary excretion of specific factors associates with sex and age and seems to have a hereditary component, but the precise genomic determinants remain ill-defined.

Methods: Genome-wide association studies previously conducted in 3 cohorts (Genetic Epidemiology Network of Arteriopathy study, January 1, 2006, through December 31, 2012; the combined Nurses' Health Study (NHS), NHS II, and Health Professionals Follow-up Study, January 1, 1994, through December 31, 2003; and the Prevention of Renal and Vascular End-stage Disease study, January 1, 1997, through December 31, 1998) were combined into meta-analyses to evaluate genetic associations with available urinary phenotypes relevant to stone pathogenesis (calcium, magnesium, and uric acid excretion; total urine volume).

Results: One region on chromosome 9q21.13 showed strong evidence of an association with urinary magnesium excretion. The strongest signal in this region was near , whose protein product mediates magnesium transport in the colon and kidney, and , , , and (rs1176815; 1.70×10, with each copy of the A allele corresponding to a daily 5.29-mg decrease in magnesium excretion). The single nucleotide polymorphism (SNP) that achieved genome-wide significance for calcium excretion (rs17216707 on chromosome 20; 1.12×10) was previously associated with fibroblast growth factor 23 levels, which regulate phosphorus and vitamin D metabolism. Urine volume and uric acid excretion did not have any genome-wide significant SNPs.

Conclusion: Common variants near genes important for magnesium metabolism and bone health associate with urinary magnesium and calcium excretion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mayocpiqo.2019.08.007DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6978610PMC
December 2019

A meta-analysis of genome-wide association studies identifies multiple longevity genes.

Nat Commun 2019 08 14;10(1):3669. Epub 2019 Aug 14.

Department of Public Health, University of Southern Denmark, 5000, Odense C, Denmark.

Human longevity is heritable, but genome-wide association (GWA) studies have had limited success. Here, we perform two meta-analyses of GWA studies of a rigorous longevity phenotype definition including 11,262/3484 cases surviving at or beyond the age corresponding to the 90th/99th survival percentile, respectively, and 25,483 controls whose age at death or at last contact was at or below the age corresponding to the 60th survival percentile. Consistent with previous reports, rs429358 (apolipoprotein E (ApoE) ε4) is associated with lower odds of surviving to the 90th and 99th percentile age, while rs7412 (ApoE ε2) shows the opposite. Moreover, rs7676745, located near GPR78, associates with lower odds of surviving to the 90th percentile age. Gene-level association analysis reveals a role for tissue-specific expression of multiple genes in longevity. Finally, genetic correlation of the longevity GWA results with that of several disease-related phenotypes points to a shared genetic architecture between health and longevity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-11558-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6694136PMC
August 2019

Examining sex differences in pleiotropic effects for depression and smoking using polygenic and gene-region aggregation techniques.

Am J Med Genet B Neuropsychiatr Genet 2019 09 20;180(6):448-468. Epub 2019 Jun 20.

Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan.

Sex differences in rates of depression are thought to contribute to sex differences in smoking initiation (SI) and number of cigarettes smoked per day (CPD). One hypothesis is that women smoke as a strategy to cope with anxiety and depression, and have difficulty quitting because of concomitant changes in hypothalamic-pituitary-adrenocortical (HPA) axis function during nicotine withdrawal states. Despite evidence of biological ties, research has not examined whether genetic factors that contribute to depression-smoking comorbidity differ by sex. We utilized two statistical aggregation techniques-polygenic scores (PGSs) and sequence kernel association testing-to assess the degree of pleiotropy between these behaviors and moderation by sex in the Health and Retirement Study (N = 8,086). At the genome-wide level, we observed associations between PGSs for depressive symptoms and SI, and measured SI and depressive symptoms (all p < .01). At the gene level, we found evidence of pleiotropy in FKBP5 for SI (p = .028), and sex-specific pleiotropy in females in NR3C2 (p = .030) and CHRNA5 (p = .025) for SI and CPD, respectively. Results suggest bidirectional associations between depression and smoking may be partially accounted for by shared genetic factors, and genetic variation in genes related to HPA-axis functioning and nicotine dependence may contribute to sex differences in SI and CPD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.b.32748DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6732217PMC
September 2019

A multi-ancestry genome-wide study incorporating gene-smoking interactions identifies multiple new loci for pulse pressure and mean arterial pressure.

Hum Mol Genet 2019 08;28(15):2615-2633

Icelandic Heart Association, Kopavogur, Iceland.

Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene-smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene-smoking interaction analysis and 38 were newly identified (P < 5 × 10-8, false discovery rate < 0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddz070DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644157PMC
August 2019

Author Correction: Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function.

Nat Commun 2019 May 1;10(1):2068. Epub 2019 May 1.

Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.

Christina M. Lill, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this article. This has now been corrected in both the PDF and HTML versions of the article.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-10160-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494826PMC
May 2019

Expression of socially sensitive genes: The multi-ethnic study of atherosclerosis.

PLoS One 2019 11;14(4):e0214061. Epub 2019 Apr 11.

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America.

Background: Gene expression may be an important biological mediator in associations between social factors and health. However, previous studies were limited by small sample sizes and use of differing cell types with heterogeneous expression patterns. We use a large population-based cohort with gene expression measured solely in monocytes to investigate associations between seven social factors and expression of genes previously found to be sensitive to social factors.

Methods: We employ three methodological approaches: 1) omnibus test for the entire gene set (Global ANCOVA), 2) assessment of each association individually (linear regression), and 3) machine learning method that performs variable selection with correlated predictors (elastic net).

Results: In global analyses, significant associations with the a priori defined socially sensitive gene set were detected for major or lifetime discrimination and chronic burden (p = 0.019 and p = 0.047, respectively). Marginally significant associations were detected for loneliness and adult socioeconomic status (p = 0.066, p = 0.093, respectively). No associations were significant in linear regression analyses after accounting for multiple testing. However, a small percentage of gene expressions (up to 11%) were associated with at least one social factor using elastic net.

Conclusion: The Global ANCOVA and elastic net findings suggest that a small percentage of genes may be "socially sensitive," (i.e. demonstrate differential expression by social factor), yet single gene approaches such as linear regression may be ill powered to capture this relationship. Future research should further investigate the biological mechanisms through which social factors act to influence gene expression and how systemic changes in gene expression affect overall health.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0214061PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459532PMC
December 2019

Multi-ancestry genome-wide gene-smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids.

Nat Genet 2019 04 29;51(4):636-648. Epub 2019 Mar 29.

Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA.

The concentrations of high- and low-density-lipoprotein cholesterol and triglycerides are influenced by smoking, but it is unknown whether genetic associations with lipids may be modified by smoking. We conducted a multi-ancestry genome-wide gene-smoking interaction study in 133,805 individuals with follow-up in an additional 253,467 individuals. Combined meta-analyses identified 13 new loci associated with lipids, some of which were detected only because association differed by smoking status. Additionally, we demonstrate the importance of including diverse populations, particularly in studies of interactions with lifestyle factors, where genomic and lifestyle differences by ancestry may contribute to novel findings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0378-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467258PMC
April 2019

Using Genetic Burden Scores for Gene-by-Methylation Interaction Analysis on Metabolic Syndrome in African Americans.

Biol Res Nurs 2019 05 19;21(3):279-285. Epub 2019 Feb 19.

5 School of Public Health, University of Michigan, Ann Arbor, MI, USA.

With the rapid advancement of omics-based research, particularly big data such as genome- and epigenome-wide association studies that include extensive environmental and clinical variables, data analytics have become increasingly complex. Researchers face significant challenges regarding how to analyze multifactorial data and make use of the findings for clinical translation. The purpose of this article is to provide a scientific exemplar for use of genetic burden scores as a data analysis method for studies with both genotype and DNA methylation data in which the goal is to evaluate associations with chronic conditions such as metabolic syndrome (MetS). This study included 739 African American men and women from the Genetic Epidemiology Network of Arteriopathy Study who met diagnostic criteria for MetS and had available genetic and epigenetic data. Genetic burden scores for evaluated genes were not significant after multiple testing corrections, but DNA methylation at 2 CpG sites (dihydroorotate dehydrogenase cg22381196 pFDR = .014; CTNNA3 cg00132141 pFDR = .043) was significantly associated with MetS after controlling for multiple comparisons. Interactions between the marginally significant CpG sites and burden scores, however, were not significant. More work is required in this area to identify intermediate biological pathways influenced by environmental, genetic, and epigenetic variation that may explain the high prevalence of MetS among African Americans. This study does serve, however, as an example of the use of the genetic burden score as an alternative data analysis approach for complex studies involving the analysis of genetic and epigenetic data simultaneously.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/1099800419828486DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700897PMC
May 2019

Multiancestry Genome-Wide Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions.

Am J Epidemiol 2019 06;188(6):1033-1054

Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom.

A person's lipid profile is influenced by genetic variants and alcohol consumption, but the contribution of interactions between these exposures has not been studied. We therefore incorporated gene-alcohol interactions into a multiancestry genome-wide association study of levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. We included 45 studies in stage 1 (genome-wide discovery) and 66 studies in stage 2 (focused follow-up), for a total of 394,584 individuals from 5 ancestry groups. Analyses covered the period July 2014-November 2017. Genetic main effects and interaction effects were jointly assessed by means of a 2-degrees-of-freedom (df) test, and a 1-df test was used to assess the interaction effects alone. Variants at 495 loci were at least suggestively associated (P < 1 × 10-6) with lipid levels in stage 1 and were evaluated in stage 2, followed by combined analyses of stage 1 and stage 2. In the combined analysis of stages 1 and 2, a total of 147 independent loci were associated with lipid levels at P < 5 × 10-8 using 2-df tests, of which 18 were novel. No genome-wide-significant associations were found testing the interaction effect alone. The novel loci included several genes (proprotein convertase subtilisin/kexin type 5 (PCSK5), vascular endothelial growth factor B (VEGFB), and apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1) complementation factor (A1CF)) that have a putative role in lipid metabolism on the basis of existing evidence from cellular and experimental models.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/aje/kwz005DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6545280PMC
June 2019

Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.

Nat Commun 2019 01 22;10(1):376. Epub 2019 Jan 22.

Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, 01246903, SP, Brazil.

Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-08008-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6342931PMC
January 2019

Combined linkage and association analysis identifies rare and low frequency variants for blood pressure at 1q31.

Eur J Hum Genet 2019 02 27;27(2):269-277. Epub 2018 Sep 27.

Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.

High blood pressure (BP) is a major risk factor for cardiovascular disease (CVD) and is more prevalent in African Americans as compared to other US groups. Although large, population-based genome-wide association studies (GWAS) have identified over 300 common polymorphisms modulating inter-individual BP variation, largely in European ancestry subjects, most of them do not localize to regions previously identified through family-based linkage studies. This discrepancy has remained unexplained despite the statistical power differences between current GWAS and prior linkage studies. To address this issue, we performed genome-wide linkage analysis of BP traits in African-American families from the Family Blood Pressure Program (FBPP) and genotyped on the Illumina Human Exome BeadChip v1.1. We identified a genomic region on chromosome 1q31 with LOD score 3.8 for pulse pressure (PP), a region we previously implicated in DBP studies of European ancestry families. Although no reported GWAS variants map to this region, combined linkage and association analysis of PP identified 81 rare and low frequency exonic variants accounting for the linkage evidence. Replication analysis in eight independent African ancestry cohorts (N = 16,968) supports this specific association with PP (P = 0.0509). Additional association and network analyses identified multiple potential candidate genes in this region expressed in multiple tissues and with a strong biological support for a role in BP. In conclusion, multiple genes and rare variants on 1q31 contribute to PP variation. Beyond producing new insights into PP, we demonstrate how family-based linkage and association studies can implicate specific rare and low frequency variants for complex traits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41431-018-0277-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336803PMC
February 2019

DNA methylation age is associated with an altered hemostatic profile in a multiethnic meta-analysis.

Blood 2018 10 24;132(17):1842-1850. Epub 2018 Jul 24.

Cardiovascular Health Research Unit, University of Washington, Seattle, WA.

Many hemostatic factors are associated with age and age-related diseases; however, much remains unknown about the biological mechanisms linking aging and hemostatic factors. DNA methylation is a novel means by which to assess epigenetic aging, which is a measure of age and the aging processes as determined by altered epigenetic states. We used a meta-analysis approach to examine the association between measures of epigenetic aging and hemostatic factors, as well as a clotting time measure. For fibrinogen, we performed European and African ancestry-specific meta-analyses which were then combined via a random effects meta-analysis. For all other measures we could not estimate ancestry-specific effects and used a single fixed effects meta-analysis. We found that 1-year higher extrinsic epigenetic age as compared with chronological age was associated with higher fibrinogen (0.004 g/L/y; 95% confidence interval, 0.001-0.007; = .01) and plasminogen activator inhibitor 1 (PAI-1; 0.13 U/mL/y; 95% confidence interval, 0.07-0.20; = 6.6 10) concentrations, as well as lower activated partial thromboplastin time, a measure of clotting time. We replicated PAI-1 associations using an independent cohort. To further elucidate potential functional mechanisms, we associated epigenetic aging with expression levels of the PAI-1 protein encoding gene () and the 3 fibrinogen subunit-encoding genes (, , and ) in both peripheral blood and aorta intima-media samples. We observed associations between accelerated epigenetic aging and transcription of in both tissues. Collectively, our results indicate that accelerated epigenetic aging is associated with a procoagulation hemostatic profile, and that epigenetic aging may regulate hemostasis in part via gene transcription.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2018-02-831347DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6202911PMC
October 2018
-->