Publications by authors named "Erik T Interval"

4 Publications

  • Page 1 of 1

Copy number alterations identify a smoking-associated expression signature predictive of poor outcome in head and neck squamous cell carcinoma.

Cancer Genet 2021 Aug 28;256-257:136-148. Epub 2021 May 28.

Department of Biochemistry, Program in Cancer Cell Biology USA. Electronic address:

Cigarette smoking is a risk factor for the development of head and neck squamous cell carcinoma (HNSCC), partially due to tobacco-induced large-scale chromosomal copy-number alterations (CNAs). Identifying CNAs caused by smoking is essential in determining how gene expression from such regions impact tumor progression and patient outcome. We utilized The Cancer Genome Atlas (TCGA) whole genome sequencing data for HNSCC to directly identify amplified or deleted genes correlating with smoking pack-year based on linear modeling. Internal cross-validation identified 35 CNAs that significantly correlated with patient smoking, independent of human papillomavirus (HPV) status. The most abundant CNAs were chromosome 11q13.3-q14.4 amplification and 9p23.1/9p24.1 deletion. Evaluation of patient amplicons reveals four different patterns of 11q13 gene amplification in HNSCC resulting from breakage-fusion-bridge (BFB) events. . Predictive modeling identified 16 genes from these regions that denote poorer overall and disease-free survival with increased pack-year use, constituting a smoking-associated expression signature (SAES). Patients with altered expression of signature genes have increased risk of death and enhanced cervical lymph node involvement. The identified SAES can be utilized as a novel predictor of increased disease aggressiveness and poor outcome in smoking-associated HNSCC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cancergen.2021.05.011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8273756PMC
August 2021

Disparate survival of late-stage male oropharyngeal cancer in Appalachia.

Sci Rep 2020 07 15;10(1):11612. Epub 2020 Jul 15.

Department of Biochemistry, Program in Cancer Cell Biology, West Virginia University Cancer Institute, West Virginia University, P.O. Box 9300, Morgantown, WV, 26506, USA.

The United States Appalachian region harbors a higher cancer burden than the rest of the nation, with disparate incidence of head and neck squamous cell carcinomas (HNSCC), including oral cavity and pharynx (OC/P) cancers. Whether elevated HNSCC incidence generates survival disparities within Appalachia is unknown. To address this, HNSCC survival data for 259,737 tumors from the North American Association for Central Cancer Registries 2007-2013 cohort were evaluated, with age-adjusted relative survival (RS) calculated based on staging, race, sex, and Appalachian residence. Tobacco use, a primary HNSCC risk factor, was evaluated through the Behavioral Risk Factor Surveillance System from Appalachian states. Decreased OC/P RS was found in stage IV Appalachian white males within a subset of states. The survival disparity was confined to human papillomavirus (HPV)-associated oropharyngeal cancers, specifically the oropharynx subsite. This correlated with significantly higher smoking and male smokeless tobacco use in most Appalachian disparity states. Lower survival of Appalachian males with advanced-stage HPV-associated oropharyngeal cancers suggests pervasive tobacco consumption likely generates more aggressive tumors at HPV-associated oropharynx subsites than national averages. Comprehensive tobacco and HPV status should therefore be evaluated prior to considering treatment de-intensification regimens for HPV-associated oropharyngeal cancers in populations with high tobacco consumption.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-68380-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363863PMC
July 2020

Cortactin Phosphorylation by Casein Kinase 2 Regulates Actin-Related Protein 2/3 Complex Activity, Invadopodia Function, and Tumor Cell Invasion.

Mol Cancer Res 2019 04 4;17(4):987-1001. Epub 2019 Jan 4.

Program in Cancer Cell Biology, Department of Biochemistry, West Virginia University, Morgantown, West Virginia.

Malregulation of the actin cytoskeleton enhances tumor cell motility and invasion. The actin-binding protein cortactin facilitates branched actin network formation through activation of the actin-related protein (Arp) 2/3 complex. Increased cortactin expression due to gene amplification is observed in head and neck squamous cell carcinoma (HNSCC) and other cancers, corresponding with elevated tumor progression and poor patient outcome. Arp2/3 complex activation is responsible for driving increased migration and extracellular matrix (ECM) degradation by governing invadopodia formation and activity. Although cortactin-mediated activation of Arp2/3 complex and invadopodia regulation has been well established, signaling pathways responsible for governing cortactin binding to Arp2/3 are unknown and potentially present a new avenue for anti-invasive therapeutic targeting. Here we identify casein kinase (CK) 2α phosphorylation of cortactin as a negative regulator of Arp2/3 binding. CK2α directly phosphorylates cortactin at a conserved threonine (T24) adjacent to the canonical Arp2/3 binding motif. Phosphorylation of cortactin T24 by CK2α impairs the ability of cortactin to bind Arp2/3 and activate actin nucleation. Decreased invadopodia activity is observed in HNSCC cells with expression of CK2α phosphorylation-null cortactin mutants, shRNA-mediated CK2α knockdown, and with the CK2α inhibitor Silmitasertib. Silmitasertib inhibits HNSCC collective invasion in tumor spheroids and orthotopic tongue tumors in mice. Collectively these data suggest that CK2α-mediated cortactin phosphorylation at T24 is critical in regulating cortactin binding to Arp2/3 complex and pro-invasive activity, identifying a potential targetable mechanism for impairing HNSCC invasion. IMPLICATIONS: This study identifies a new signaling pathway that contributes to enhancing cancer cell invasion. http://mcr.aacrjournals.org/content/molcanres/17/4/987/F1.large.jpg.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1541-7786.MCR-18-0391DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445698PMC
April 2019
-->