Publications by authors named "Erhe Gao"

223 Publications

FNDC5/Irisin attenuates diabetic cardiomyopathy in a type 2 diabetes mouse model by activation of integrin αV/β5-AKT signaling and reduction of oxidative/nitrosative stress.

J Mol Cell Cardiol 2021 Jul 3;160:27-41. Epub 2021 Jul 3.

Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China. Electronic address:

Irisin, the cleaved form of the fibronectin type III domain containing 5 (FNDC5) protein, is involved in metabolism and inflammation. Recent findings indicated that irisin participated in cardiovascular physiology and pathology. In this study, we investigated the effects of FNDC5/irisin on diabetic cardiomyopathy (DCM) in type 2 diabetic db/db mice. Downregulation of myocardial FNDC5/irisin protein expression and plasma irisin levels was observed in db/db mice compared to db/+ controls. Moreover, echocardiography revealed that db/db mice exhibited normal cardiac systolic function and impaired diastolic function. Adverse structural remodeling, including cardiomyocyte apoptosis, myocardial fibrosis, and cardiac hypertrophy were observed in the hearts of db/db mice. Sixteen-week-old db/db mice were intramyocardially injected with adenovirus encoding FNDC5 or treated with recombinant human irisin via a peritoneal implant osmotic pump for 4 weeks. Both overexpression of myocardial FNDC5 and exogenous irisin administration attenuated diastolic dysfunction and cardiac structural remodeling in db/db mice. Results from in vitro studies revealed that FNDC5/irisin protein expression was decreased in high glucose (HG)/high fat (HF)-treated cardiomyocytes. Increased levels of inducible nitric oxide synthase (iNOS), NADPH oxidase 2 (NOX2), 3-nitrotyrosine (3-NT), reactive oxygen species (ROS), and peroxynitrite (ONOO) in HG/HF-treated H9C2 cells provided evidence of oxidative/nitrosative stress, which was alleviated by treatment with FNDC5/irisin. Moreover, the mitochondria membrane potential (ΔΨm) was decreased and cytochrome C was released from mitochondria with increased levels of cleaved caspase-3 in HG/HF-treated H9C2 cells, indicating the presence of mitochondria-dependent apoptosis, which was partially reversed by FNDC5/irisin treatment. Mechanistic studies showed that activation of integrin αVβ5-AKT signaling and attenuation of oxidative/nitrosative stress were responsible for the cardioprotective effects of FNDC5/irisin. Therefore, FNDC5/irisin mediates cardioprotection in DCM by inhibiting myocardial apoptosis, myocardial fibrosis, and cardiac hypertrophy. These findings implicate that FNDC5/irisin as a potential therapeutic intervention for DCM, especially in type 2 diabetes mellitus (T2DM).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2021.06.013DOI Listing
July 2021

Electroacupuncture Pretreatment Mitigates Myocardial Ischemia/Reperfusion Injury via XBP1/GRP78/Akt Pathway.

Front Cardiovasc Med 2021 14;8:629547. Epub 2021 Jun 14.

Department of Anesthesiology, Xi'an Children's Hospital, Xi'an Jiaotong University, Xi'an, China.

Myocardial ischemia/reperfusion injury is a common clinical problem and can result in severe cardiac dysfunction. Previous studies have demonstrated the protection of electroacupuncture against myocardial ischemia/reperfusion injury. However, the role of X-box binding protein I (XBP1) signaling pathway in the protection of electroacupuncture was still elusive. Thus, we designed this study and demonstrated that electroacupuncture significantly improved cardiac function during myocardial ischemia/reperfusion injury and reduced cardiac infarct size. Electroacupuncture treatment further inhibited cardiac injury manifested by the decrease of the activities of serum lactate dehydrogenase and creatine kinase-MB. The results also revealed that electroacupuncture elevated the expressions of XBP1, glucose-regulated protein 78 (GRP78), Akt, and Bcl-2 and decreased the Bax and cleaved Caspase 3 expressions. By using the inhibitor of XBP1 , the results revealed that suppression of XBP1 expression could markedly increase the activities of lactate dehydrogenase and creatine kinase-MB and cell apoptosis, thus exacerbating stimulated ischemia/reperfusion-induced H9c2 cell injury. Compared with stimulated ischemia/reperfusion group, inhibition of XBP1 inhibited the downstream GRP78 and Akt expressions during stimulated ischemia/reperfusion injury. Collectively, our data demonstrated that electroacupuncture treatment activated XBP1/GRP78/Akt signaling to protect hearts from myocardial ischemia/reperfusion injury. These findings revealed the underlying mechanisms of electroacupuncture protection against myocardial ischemia/reperfusion injury and may provide novel therapeutic targets for the clinical treatment of myocardial ischemia/reperfusion injury.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fcvm.2021.629547DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236521PMC
June 2021

Myofibroblast Deficiency of LSD1 Alleviates TAC-Induced Heart Failure.

Circ Res 2021 Jul 3;129(3):400-413. Epub 2021 Jun 3.

State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University (J.-L.H., L.J., Q.A., X.C., Y.Q., B.W., Y.Z., X.S., H.-M.L., C.W., W.Z.).

[Figure: see text].
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.120.318149DOI Listing
July 2021

Epidermal growth factor receptor-dependent maintenance of cardiac contractility.

Cardiovasc Res 2021 Apr 23. Epub 2021 Apr 23.

Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA.

Aims: Epidermal growth factor receptor (EGFR) is essential to the development of multiple tissues and organs and is a target of cancer therapeutics. Due to the embryonic lethality of global EGFR deletion and conflicting reports of cardiac-overexpressed EGFR mutants, its specific impact on the adult heart, normally or in response to chronic stress, has not been established. Using complimentary genetic strategies to modulate cardiomyocyte-specific EGFR expression, we aim to define its role in the regulation of cardiac function and remodeling.

Methods And Results: A floxed EGFR mouse model with α-myosin heavy chain-Cre-mediated cardiomyocyte-specific EGFR downregulation (CM-EGFR-KD mice) developed contractile dysfunction by 9 weeks of age, marked by impaired diastolic relaxation, as monitored via echocardiographic, hemodynamic and isolated cardiomyocyte contractility analyses. This contractile defect was maintained over time without overt cardiac remodeling until 10 months of age, after which the mice ultimately developed severe heart failure and reduced lifespan. Acute downregulation of EGFR in adult floxed EGFR mice with adeno-associated virus 9 (AAV9)-encoded Cre with a cardiac troponin T promoter (AAV9-cTnT-Cre) recapitulated the CM-EGFR-KD phenotype, while AAV9-cTnT-EGFR treatment of adult CM-EGFR-KD mice rescued the phenotype. Notably, chronic administration of the β-adrenergic receptor (βAR) agonist isoproterenol effectively and reversibly compensated for the contractile dysfunction in the absence of cardiomyocyte hypertrophy in CM-EGFR-KD mice. Mechanistically, EGFR downregulation reduced the expression of protein phosphatase 2 A (PP2A) regulatory subunit Ppp2r3a/PR72, which was associated with decreased phosphorylation of phospholamban (PLB) and Ca2+ clearance, and whose re-expression via AAV9-cTnT-PR72 rescued the CM-EGFR-KD phenotype.

Conclusions: Altogether our study highlights a previously unrecognized role for EGFR in maintaining contractile homeostasis under physiologic conditions in the adult heart via regulation of PR72 expression.

Translational Perspective: Our study highlights a previously unrecognized role for EGFR in maintaining contractile homeostasis under physiologic conditions in the adult heart via regulation of PR72, a PP2A regulatory subunit with an unknown impact on cardiac function. Further, we have shown that cardiomyocyte-expressed EGFR is required for the promotion of cardiac hypertrophy under conditions of chronic catecholamine stress. Altogether, our study provides new insight into the dynamic nature of cardiomyocyte-specific EGFR.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvab149DOI Listing
April 2021

Identification of a CTRP9 C-Terminal polypeptide capable of enhancing bone-derived mesenchymal stem cell cardioprotection through promoting angiogenic exosome production.

Redox Biol 2021 05 4;41:101929. Epub 2021 Mar 4.

Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA. Electronic address:

Background: Mesenchymal stem cell therapy improves ischemic heart failure via incompletely understood mechanisms. C1q-TNFα related protein-9 (CTRP9) is a novel anti-oxidative cardiokine capable of improving the local microenvironment and cell survival by its c-terminal active globular domain (gCTRP9). The current study attempted to: 1) identify active gCTRP9 c-terminal polypeptides with stem cell protective function; 2) determine whether a lead polypeptide may enable/enhance cortical bone-derived mesenchymal stem cell (CBSC) cardioprotection against post-myocardial infarction (post-MI) remodeling; and 3) define the responsible underlying cellular/molecular mechanisms.

Methods And Results: Utilizing I-TASSER structure prediction and 3-D active site modeling, we cloned and purified 3 gCTRP9 fragments (CTRP9-237, CTRP9-277, and CTRP9-281). Their activation of cell salvage kinase was compared against gCTRP9. Among the three fragments, CTRP9-281 (a 45 residue-containing polypeptide) exerted comparable or greater ERK1/2 activation compared to gCTRP9. Treatment with CTRP9-281 or gCTRP9 significantly increased CBSC proliferation and migration, and attenuated oxidative stress-induced CBSC apoptosis. CTRP9-281 and gCTRP9 comparably upregulated SOD2 and SOD3 expression. However, CTRP9-281, not gCTRP9, upregulated FGF2 and VEGFA expression/secretion in an ERK1/2 dependent manner. Administration of gCTRP9 or CTRP9-281 alone attenuated post-MI cardiac dysfunction and improved CBSC retention in the infarcted heart in similar fashion. However, CTRP9-281 exerted greater synergistic effect with CBSC than gCTRP9 related to pro-angiogenic, anti-fibrotic, and anti-remodeling effects. Mechanistically, CTRP9-281 significantly increased SOD2-rich and VEGFA-rich exosome production by CBSC. Exosomes from CTRP9-281 treated CBSC significantly attenuated oxidative stress-induced cardiomyocyte apoptosis in vitro. An exosome generation inhibitor attenuated CTRP9-281 enhancement of CBSC cardioprotection in vivo.

Conclusion: We identified a CTRP9 polypeptide that upregulates SOD2/SOD3 expression and improves CBSC survival/retention, similar to gCTRP9. Moreover, CTRP9-281 stimulates VEGFA-rich exosome production by CBSC, exerting superior pro-angiogenic, anti-fibrotic, and cardioprotective actions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.redox.2021.101929DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7966869PMC
May 2021

Extracellular vesicles from anoxia preconditioned mesenchymal stem cells alleviate myocardial ischemia/reperfusion injury.

Aging (Albany NY) 2021 02 12;13(4):6156-6170. Epub 2021 Feb 12.

Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Extracellular vesicles (EVs) produced by anoxia-preconditioned mesenchymal stem cells (MSCs) may afford greater cardioprotection against myocardial ischemia-reperfusion injury (MIRI) than EVs derived from normoxic MSCs. Here, we isolated EVs from mouse adipose-derived MSCs (ADSCs) subjected to anoxia preconditioning or normoxia and evaluated their ability to promote survival of mouse cardiomyocytes following MIRI and anoxia/reoxygenation (AR) . Injection of anoxia-preconditioned ADSC EVs (Int-EVs) reduced both infarct size and cardiomyocyte apoptosis to a greater extent than normoxic ADSC EVs (NC-EVs) in mice subjected to MIRI. Sequencing EV-associated miRNAs revealed differential upregulation of ten miRNAs predicted to bind thioredoxin-interacting protein (TXNIP), an inflammasome- and pyroptosis-related protein. We confirmed direct binding of miRNA224-5p, the most upregulated miRNA in Int-EVs, to TXNIP and asserted through western blotting and apoptosis assays a critical protective role for this miRNA against AR-induced cardiomyocyte death. Our results suggest that ischemia-reperfusion triggers TXNIP-induced inflammasome activation in cardiomyocytes, which leads to apoptosis rather than pyroptosis due to low basal levels of the pyroptosis executioner protein gasdermin D in these cells. The antiapoptotic effect of EV-associated miRNA224-5p would in turn result from TXNIP downregulation, which prevents caspase-1-mediated degradation of GATA4 and sustains the expression of Bcl-2.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/aging.202611DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7950238PMC
February 2021

GRK5 contributes to impaired cardiac function and immune cell recruitment in post-ischemic heart failure.

Cardiovasc Res 2021 Feb 9. Epub 2021 Feb 9.

Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.

Aims: Myocardial infarction (MI) is the most common cause of heart failure (HF) worldwide. G protein-coupled receptor kinase 5 (GRK5) is upregulated in failing human myocardium and promotes maladaptive cardiac hypertrophy in animal models. However, the role of GRK5 in ischemic heart disease is still unknown. In this study, we evaluated whether myocardial GRK5 plays a critical role post-MI in mice and included examination of specific cardiac immune and inflammatory responses.

Methods And Results: Cardiomyocyte-specific GRK5 overexpressing transgenic mice (TgGRK5) and non-transgenic littermate control (NLC) mice as well as cardiomyocyte-specific GRK5 knockout mice (GRK5cKO) and wild type (WT) were subjected to MI and, functional as well as structural changes together with outcomes were studied. TgGRK5 post-MI mice showed decreased cardiac function, augmented left ventricular dimension and decreased survival rate compared to NLC post-MI mice. Cardiac hypertrophy and fibrosis as well as fetal gene expression were increased post-MI in TgGRK5 compared to NLC mice. In TgGRK5 mice, GRK5 elevation produced immuno-regulators that contributed to the elevated and long-lasting leukocyte recruitment into the injured heart and ultimately to chronic cardiac inflammation. We found an increased presence of pro-inflammatory neutrophils and macrophages as well as neutrophils, macrophages and T- lymphocytes at 4- days and 8- weeks respectively post-MI in TgGRK5 hearts. Conversely, GRK5cKO mice were protected from ischemic injury and showed reduced early immune cell recruitment (predominantly monocytes) to the heart, improved contractility and reduced mortality compared to WT post-MI mice. Interestingly, cardiomyocyte-specific GRK2 transgenic mice did not share the same phenotype of TgGRK5 mice and did not have increased cardiac leukocyte migration and cytokine or chemokine production post-MI.

Conclusions: Our study shows that myocyte GRK5 has a crucial and GRK-selective role on the regulation of leucocyte infiltration into the heart, cardiac function and survival in a murine model of post-ischemic HF, supporting GRK5 inhibition as a therapeutic target for HF.

Translational Perspective: GRK5 is upregulated in failing human myocardium and associated with heart failure development. In this study, we evaluated whether cardiomyocyte GRK5 plays a critical role during ischemic heart disease in a mouse animal model. We discovered that GRK5 overexpression in cardiomyocyte affects cardiac function, remodeling, immune cell recruitment, and ultimately survival in ischemic heart failure. Conversely, cardiomyocyte-specific GRK5 ablation diminished the early immune cell infiltration in the heart, improved contractility and reduced mortality post-myocardial infarction. The overall translational significance of these findings is substantial, as selective small molecule inhibitors of GRK5 have begun to emerge as novel therapeutic treatment in heart disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvab044DOI Listing
February 2021

A peptide of the amino-terminus of GRK2 induces hypertrophy and yet elicits cardioprotection after pressure overload.

J Mol Cell Cardiol 2021 05 4;154:137-153. Epub 2021 Feb 4.

Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA. Electronic address:

G protein-coupled receptor (GPCR) kinase 2 (GRK2) expression and activity are elevated early on in response to several forms of cardiovascular stress and are a hallmark of heart failure. Interestingly, though, in addition to its well-characterized role in regulating GPCRs, mounting evidence suggests a GRK2 "interactome" that underlies a great diversity in its functional roles. Several such GRK2 interacting partners are important for adaptive and maladaptive myocyte growth; therefore, an understanding of domain-specific interactions with signaling and regulatory molecules could lead to novel targets for heart failure therapy. Herein, we subjected transgenic mice with cardiac restricted expression of a short, amino terminal fragment of GRK2 (βARKnt) to pressure overload and found that unlike their littermate controls or previous GRK2 fragments, they exhibited an increased left ventricular wall thickness and mass prior to cardiac stress that underwent proportional hypertrophic growth to controls after acute pressure overload. Importantly, despite this enlarged heart, βARKnt mice did not undergo the expected transition to heart failure observed in controls. Further, βARKnt expression limited adverse left ventricular remodeling and increased cell survival signaling. Proteomic analysis to identify βARKnt binding partners that may underlie the improved cardiovascular phenotype uncovered a selective functional interaction of both endogenous GRK2 and βARKnt with AKT substrate of 160 kDa (AS160). AS160 has emerged as a key downstream regulator of insulin signaling, integrating physiological and metabolic cues to couple energy demand to membrane recruitment of Glut4. Our preliminary data indicate that in βARKnt mice, cardiomyocyte insulin signaling is improved during stress, with a coordinate increase in spare respiratory activity and ATP production without metabolite switching. Surprisingly, these studies also revealed a significant decrease in gonadal fat weight, equivalent to human abdominal fat, in male βARKnt mice at baseline and following cardiac stress. These data suggest that the enhanced AS160-mediated signaling in the βARKnt mice may ameliorate pathological cardiac remodeling through direct modulation of insulin signaling within cardiomyocytes, and translate these to beneficial effects on systemic metabolism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2021.01.004DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8101069PMC
May 2021

Characterization of βARKct engineered cellular extracellular vesicles and model specific cardioprotection.

Am J Physiol Heart Circ Physiol 2021 04 29;320(4):H1276-H1289. Epub 2021 Jan 29.

Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.

Recent data supporting any benefit of stem cell therapy for ischemic heart disease have suggested paracrine-based mechanisms via extracellular vesicles (EVs) including exosomes. We have previously engineered cardiac-derived progenitor cells (CDCs) to express a peptide inhibitor, βARKct, of G protein-coupled receptor kinase 2, leading to improvements in cell proliferation, survival, and metabolism. In this study, we tested whether βARKct-CDC EVs would be efficacious when applied to stressed myocytes in vitro and in vivo. When isolated EVs from βARKct-CDCs and control GFP-CDCs were added to cardiomyocytes in culture, they both protected against hypoxia-induced apoptosis. We tested whether these EVs could protect the mouse heart in vivo, following exposure either to myocardial infarction (MI) or acute catecholamine toxicity. Both types of EVs significantly protected against ischemic injury and improved cardiac function after MI compared with mice treated with EVs from mouse embryonic fibroblasts; however, βARKct EVs treated mice did display some unique beneficial properties including significantly altered pro- and anti-inflammatory cytokines. Importantly, in a catecholamine toxicity model of heart failure (HF), myocardial injections of βARKct-containing EVs were superior at preventing HF compared with control EVs, and this catecholamine toxicity protection was recapitulated in vitro. Therefore, introduction of the βARKct into cellular EVs can have improved reparative properties in the heart especially against catecholamine damage, which is significant as sympathetic nervous system activity is increased in HF. βARKct, the peptide inhibitor of GRK2, improves survival and metabolic functions of cardiac-derived progenitor cells. As any benefit of stem cells in the ischemic and injured heart suggests paracrine mechanisms via secreted EVs, we investigated whether CDC-βARKct engineered EVs would show any benefit over control CDC-EVs. Compared with control EVs, βARKct-containing EVs displayed some unique beneficial properties that may be due to altered pro- and anti-inflammatory cytokines within the vesicles.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00571.2020DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260382PMC
April 2021

GRK5 is a regulator of fibroblast activation and cardiac fibrosis.

Proc Natl Acad Sci U S A 2021 02;118(5)

Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140;

Pathological remodeling of the heart is a hallmark of chronic heart failure (HF) and these structural changes further perpetuate the disease. Cardiac fibroblasts are the critical cell type that is responsible for maintaining the structural integrity of the heart. Stress conditions, such as a myocardial infarction (MI), can activate quiescent fibroblasts into synthetic and contractile myofibroblasts. G protein-coupled receptor kinase 5 (GRK5) is an important mediator of cardiovascular homeostasis through dampening of GPCR signaling, and is expressed in the heart and up-regulated in human HF. Of note, GRK5 has been demonstrated to translocate to the nucleus in cardiomyocytes in a calcium-calmodulin (Ca-CAM)-dependent manner, promoting hypertrophic gene transcription through activation of nuclear factor of activated T cells (NFAT). Interestingly, NFAT is also involved in fibroblast activation. GRK5 is highly expressed and active in cardiac fibroblasts; however, its pathophysiological role in these crucial cardiac cells is unknown. We demonstrate using adult cardiac fibroblasts that genetic deletion of GRK5 inhibits angiotensin II (AngII)-mediated fibroblast activation. Fibroblast-specific deletion of GRK5 in mice led to decreased fibrosis and cardiac hypertrophy after chronic AngII infusion or after ischemic injury compared to nontransgenic littermate controls (NLCs). Mechanistically, we show that nuclear translocation of GRK5 is involved in fibroblast activation. These data demonstrate that GRK5 is a regulator of fibroblast activation in vitro and cardiac fibrosis in vivo. This adds to previously published data which demonstrate the potential beneficial effects of GRK5 inhibition in the context of cardiac disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2012854118DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865138PMC
February 2021

Cardiomyocyte Krüppel-Like Factor 5 Promotes De Novo Ceramide Biosynthesis and Contributes to Eccentric Remodeling in Ischemic Cardiomyopathy.

Circulation 2021 Mar 12;143(11):1139-1156. Epub 2021 Jan 12.

Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (M.H., D.P., I.D.K., C.M., S.R., E.G., R.K., K.D.).

Background: We previously showed that cardiomyocyte Krϋppel-like factor (KLF) 5 regulates cardiac fatty acid oxidation. As heart failure has been associated with altered fatty acid oxidation, we investigated the role of cardiomyocyte KLF5 in lipid metabolism and pathophysiology of ischemic heart failure.

Methods: Using real-time polymerase chain reaction and Western blot, we investigated the KLF5 expression changes in a myocardial infarction (MI) mouse model and heart tissue from patients with ischemic heart failure. Using 2D echocardiography, we evaluated the effect of KLF5 inhibition after MI using pharmacological KLF5 inhibitor ML264 and mice with cardiomyocyte-specific KLF5 deletion (αMHC [α-myosin heavy chain]-KLF5). We identified the involvement of KLF5 in regulating lipid metabolism and ceramide accumulation after MI using liquid chromatography-tandem mass spectrometry, and Western blot and real-time polymerase chain reaction analysis of ceramide metabolism-related genes. We lastly evaluated the effect of cardiomyocyte-specific KLF5 overexpression (αMHC-rtTA [reverse tetracycline-controlled transactivator]-KLF5) on cardiac function and ceramide metabolism, and rescued the phenotype using myriocin to inhibit ceramide biosynthesis.

Results: KLF5 mRNA and protein levels were higher in human ischemic heart failure samples and in rodent models at 24 hours, 2 weeks, and 4 weeks post-permanent left coronary artery ligation. αMHC-KLF5 mice and mice treated with ML264 had higher ejection fraction and lower ventricular volume and heart weight after MI. Lipidomic analysis showed that αMHC-KLF5 mice with MI had lower myocardial ceramide levels compared with littermate control mice with MI, although basal ceramide content of αMHC-KLF5 mice was not different in control mice. KLF5 ablation suppressed the expression of SPTLC1 and SPTLC2 (serine palmitoyltransferase [SPT] long-chain base subunit ()1 2, respectively), which regulate de novo ceramide biosynthesis. We confirmed our previous findings that myocardial SPTLC1 and SPTLC2 levels are increased in heart failure patients. Consistently, αMHC-rtTA-KLF5 mice showed increased SPTLC1 and SPTLC2 expression, higher myocardial ceramide levels, and systolic dysfunction beginning 2 weeks after KLF5 induction. Treatment of αMHC-rtTA-KLF5 mice with myriocin that inhibits SPT, suppressed myocardial ceramide levels and alleviated systolic dysfunction.

Conclusions: KLF5 is induced during the development of ischemic heart failure in humans and mice and stimulates ceramide biosynthesis. Genetic or pharmacological inhibition of KLF5 in mice with MI prevents ceramide accumulation, alleviates eccentric remodeling, and increases ejection fraction. Thus, KLF5 emerges as a novel therapeutic target for the treatment of ischemic heart failure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.120.047420DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7965352PMC
March 2021

Effects of myocardial ischemia/reperfusion injury on plasma metabolomic profile during aging.

Aging Cell 2021 01 29;20(1):e13284. Epub 2020 Dec 29.

Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.

Background: Heart disease is a frequent cause of hospitalization and mortality for elderly patients. A common feature of both heart disease and aging itself is the involvement of metabolic organ alterations ultimately leading to changes in circulating metabolite levels. However, the specific contribution of aging and ischemic injury to the metabolic dysregulation occurring in older adults with ischemic heart disease is still unknown.

Aim: To evaluate the effects of aging and ischemia/reperfusion (I/R) injury on plasma metabolomic profiling in mice.

Methods: Young and aged mice were subjected to a minimally invasive model of I/R injury or sham operation. Complete evaluation of cardiac function and untargeted plasma metabolomics analysis were performed.

Results: We confirmed that aged mice from the sham group had impaired cardiac function and augmented left ventricular (LV) dimensions compared to young sham-operated mice. Further, we found that ischemic injury did not drastically reduce LV systolic/diastolic function and dyssynchrony in aged compared to young mice. Using an untargeted metabolomics approach focused on aqueous metabolites, we found that ischemic injury does not affect the plasma metabolomic profile either in young or old mice. Our data also demonstrate that age significantly affects circulating metabolite levels (predominantly amino acids, phospholipids and organic acids) and perturbs several pathways involved in amino acid, glucid and nucleic acid metabolism as well as pyridoxal-5'-phosphate salvage pathway in both sham and ischemic mice.

Conclusions: Our approach increases our understanding of age-associated plasma metabolomic signatures in mice with and without heart disease excluding confounding factors related to metabolic comorbidities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/acel.13284DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7811846PMC
January 2021

MicroRNA-21 Mediates a Positive Feedback on Angiotensin II-Induced Myofibroblast Transformation.

J Inflamm Res 2020 27;13:1007-1020. Epub 2020 Nov 27.

Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.

Objective: Post myocardial infarction (MI) fibrosis has been identified as an important factor in the progression of heart failure. Previous studies have revealed that microRNA-21 (miR-21) plays an important role in the pathogenesis of fibrosis. The purpose of this study was to explore the role of miR-21 in post-MI cardiac fibrosis.

Material And Methods: MI was established in wild-type (WT) and miR-21 knockout (KO) mice. Primary mice cardiac fibroblasts (CFs) were isolated from WT and miR-21 KO mice and were treated with angiotensin II (Ang II) or Sprouty1 (Spry1) siRNA. Histological analysis and echocardiography were used to determine the extent of fibrosis and cardiac function.

Results: Compared with WT mice, miR-21 KO mice displayed smaller fibrotic areas and decreased expression of fibrotic markers and inflammatory cytokines. In parallel, Ang II-induced myofibroblasts transformation was partially inhibited upon miR-21 KO in primary CFs. Mechanistically, we found that the expression of Spry1, a previously reported target of miR-21, was markedly increased in miR-21 KO mice post MI, further inhibiting ERK1/2 activation. In vitro studies showed that Ang II activated ERK1/2/TGF-β/Smad2/3 pathway. Phosphorylated Smad2/3 further enhanced the expression of α-SMA and FAP and may promote the maturation of miR-21, thereby downregulating Spry1. Additionally, these effects of miR-21 KO on fibrosis were reversed by siRNA-mediated knockdown of Spry1.

Conclusion: Our findings suggest that miR-21 promotes post-MI fibrosis by targeting Spry1. Furthermore, it mediates a positive feedback on Ang II, thereby inducing the ERK/TGF-β/Smad pathway. Therefore, targeting the miR-21-Spry1 axis may be a promising therapeutic option for ameliorating post-MI cardiac fibrosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2147/JIR.S285714DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708310PMC
November 2020

Constructing and evaluating caspase-activatable adeno-associated virus vector for gene delivery to the injured heart.

J Control Release 2020 12 4;328:834-845. Epub 2020 Nov 4.

Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, TX 77005, United States; Department of Bioengineering, Rice University, 6100 Main St., Houston, TX 77005, United States. Electronic address:

Adeno-associated virus (AAV) is a promising vector for gene therapy, but its broad tropism can be detrimental if the transgene being delivered is harmful when expressed ubiquitously in the body, i.e. in non-target tissues. Delivering the transgene of interest to target cells at levels high enough to be therapeutically effective while maintaining safety by minimizing delivery to off-target cells is a prevalent challenge in the field of gene therapy. We have developed a protease activatable vector (provector) platform based on AAV9 that can be injected systemically to deliver therapeutic transgenes site-specifically to diseased cells by responding to extracellular proteases present at the disease site. The provector platform consists of a peptide insertion into the virus capsid which disrupts the virus' ability to bind to cell surface receptors. This peptide contains a blocking motif (aspartic acid residues) flanked on either side by cleavage sequences that are recognized by certain proteases. Exposure to proteases cleaves the peptides off the capsid, activating or "switching ON" the provector. In response to the activation, the provectors regain their ability to bind and transduce cells. Here, we have designed a provector that is activated by cysteine aspartic proteases (caspases), which have roles in inflammation and apoptosis and thus are elevated at sites of diseases such as heart failure, neurodegenerative diseases, and ischemic stroke. This provector demonstrates a 200-fold reduction in transduction ability in the OFF state compared to AAV9, reducing the virus' ability to transduce off-target healthy tissue. Following exposure to and proteolysis by caspase-3, the provector shows a 95-fold increase in transduction compared to the OFF state. The switchable transduction behavior was found to be a direct result of the peptide insertion ablating the ability of the virus to bind to cells. In vivo studies were conducted to characterize the biodistribution, blood circulation time, neutralizing antibody formation, and targeted delivery ability of the caspase-activatable provector in a model of heart failure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2020.10.058DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770761PMC
December 2020

Liposomal delivery of azithromycin enhances its immunotherapeutic efficacy and reduces toxicity in myocardial infarction.

Sci Rep 2020 10 6;10(1):16596. Epub 2020 Oct 6.

Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, USA.

A growing body of evidence shows that altering the inflammatory response by alternative macrophage polarization is protective against complications related to acute myocardial infarction (MI). We have previously shown that oral azithromycin (AZM), initiated prior to MI, reduces inflammation and its negative sequelae on the myocardium. Here, we investigated the immunomodulatory role of a liposomal AZM formulation (L-AZM) in a clinically relevant model to enhance its therapeutic potency and avoid off-target effects. L-AZM (40 or 10 mg/kg, IV) was administered immediately post-MI and compared to free AZM (F-AZM). L-AZM reduced cardiac toxicity and associated mortality by 50% in mice. We observed a significant shift favoring reparatory/anti-inflammatory macrophages with L-AZM formulation. L-AZM use resulted in a remarkable decrease in cardiac inflammatory neutrophils and the infiltration of inflammatory monocytes. Immune cell modulation was associated with the downregulation of pro-inflammatory genes and the upregulation of anti-inflammatory genes. The immunomodulatory effects of L-AZM were associated with a reduction in cardiac cell death and scar size as well as enhanced angiogenesis. Overall, L-AZM use enhanced cardiac recovery and survival after MI. Importantly, L-AZM was protective from F-AZM cardiac off-target effects. We demonstrate that the liposomal formulation of AZM enhances the drug's efficacy and safety in an animal model of acute myocardial injury. This is the first study to establish the immunomodulatory properties of liposomal AZM formulations. Our findings strongly support clinical trials using L-AZM as a novel and clinically relevant therapeutic target to improve cardiac recovery and reduce heart failure post-MI in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-73593-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7538891PMC
October 2020

Autotaxin inhibition reduces cardiac inflammation and mitigates adverse cardiac remodeling after myocardial infarction.

J Mol Cell Cardiol 2020 12 2;149:95-114. Epub 2020 Oct 2.

Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA. Electronic address:

Objective: Acute myocardial infarction (AMI) initiates pathological inflammation which aggravates tissue damage and causes heart failure. Lysophosphatidic acid (LPA), produced by autotaxin (ATX), promotes inflammation and the development of atherosclerosis. The role of ATX/LPA signaling nexus in cardiac inflammation and resulting adverse cardiac remodeling is poorly understood.

Approach And Results: We assessed autotaxin activity and LPA levels in relation to cardiac and systemic inflammation in AMI patients and C57BL/6 (WT) mice. Human and murine peripheral blood and cardiac tissue samples showed elevated levels of ATX activity, LPA, and inflammatory cells following AMI and there was strong correlation between LPA levels and circulating inflammatory cells. In a gain of function model, lipid phosphate phosphatase-3 (LPP3) specific inducible knock out (Mx1-Plpp3) showed higher systemic and cardiac inflammation after AMI compared to littermate controls (Mx1-Plpp3); and a corresponding increase in bone marrow progenitor cell count and proliferation. Moreover, in Mx1- Plpp3 mice, cardiac functional recovery was reduced with corresponding increases in adverse cardiac remodeling and scar size (as assessed by echocardiography and Masson's Trichrome staining). To examine the effect of ATX/LPA nexus inhibition, we treated WT mice with the specific pharmacological inhibitor, PF8380, twice a day for 7 days post AMI. Inhibition of the ATX/LPA signaling nexus resulted in significant reduction in post-AMI inflammatory response, leading to favorable cardiac functional recovery, reduced scar size and enhanced angiogenesis.

Conclusion: ATX/LPA signaling nexus plays an important role in modulating inflammation after AMI and targeting this mechanism represents a novel therapeutic target for patients presenting with acute myocardial injury.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2020.09.011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7744112PMC
December 2020

Irisin attenuates myocardial ischemia/reperfusion-induced cardiac dysfunction by regulating ER-mitochondria interaction through a mitochondrial ubiquitin ligase-dependent mechanism.

Clin Transl Med 2020 Sep;10(5):e166

Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.

Background: Myocardial ischemia/reperfusion (MI/R) injury imposes devastating cardiovascular sequelae in particular cardiac dysfunction as a result of restored blood flow. However, the mechanism behind MI/R injury remains elusive. Mitochondrial ubiquitin ligase (MITOL/MARCH5) is localized at the mitochondria-ER contact site and may be activated in response to a variety of pathophysiological processes, such as apoptosis, mitochondrial injury, ER stress, hypoxia, and reactive oxygen species (ROS) generation. Irisin as a cleaved product of fibronectin type III domain-containing protein 5 (FNDC5) displays cardioprotection in diverse cardiac diseases.

Methods: This study was designed to examine the role of irisin and MITOL in MI/R injury. Male C57BL/6J mice (8-10-week-old) were administered adenovirus MITOL shRNA through intracardiac injection followed by MI/R surgery through ligation and release the slipknot of cardiac left anterior descending coronary artery.

Results: Our results showed that irisin improved myocardial function in the face of MI/R injury as evidenced by reduced myocardial infarct size, apoptotic rate, serum lactate dehydrogenase (LDH), ROS generation, and malondialdehyde (MDA) levels as well as lessened ER stress injury. Moreover, our results indicated that protective role of irisin was mediated by upregulation of MITOL. Irisin also protected H9c2 cells against simulated I/R through negating ER stress, apoptosis, ROS and MDA levels, as well as facilitating superoxide dismutase (SOD) by way of elevated MITOL expression.

Conclusions: To this end, our data favored that irisin pretreatment protects against MI/R injury, ER stress, ROS production, and mitochondrial homeostasis through upregulation of MITOL. These findings depicted the therapeutic potential of irisin and MITOL in the management of MI/R injury in patients with ST-segment elevation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ctm2.166DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7507588PMC
September 2020

Genomic Binding Patterns of Forkhead Box Protein O1 Reveal Its Unique Role in Cardiac Hypertrophy.

Circulation 2020 09 9;142(9):882-898. Epub 2020 Jul 9.

Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA.

Background: Cardiac hypertrophic growth is mediated by robust changes in gene expression and changes that underlie the increase in cardiomyocyte size. The former is regulated by RNA polymerase II (pol II) de novo recruitment or loss; the latter involves incremental increases in the transcriptional elongation activity of pol II that is preassembled at the transcription start site. The differential regulation of these distinct processes by transcription factors remains unknown. Forkhead box protein O1 (FoxO1) is an insulin-sensitive transcription factor that is also regulated by hypertrophic stimuli in the heart. However, the scope of its gene regulation remains unexplored.

Methods: To address this, we performed FoxO1 chromatin immunoprecipitation-deep sequencing in mouse hearts after 7 days of isoproterenol injections (3 mg·kg·mg), transverse aortic constriction, or vehicle injection/sham surgery.

Results: Our data demonstrate increases in FoxO1 chromatin binding during cardiac hypertrophic growth, which positively correlate with extent of hypertrophy. To assess the role of FoxO1 on pol II dynamics and gene expression, the FoxO1 chromatin immunoprecipitation-deep sequencing results were aligned with those of pol II chromatin immunoprecipitation-deep sequencing across the chromosomal coordinates of sham- or transverse aortic constriction-operated mouse hearts. This uncovered that FoxO1 binds to the promoters of 60% of cardiac-expressed genes at baseline and 91% after transverse aortic constriction. FoxO1 binding is increased in genes regulated by pol II de novo recruitment, loss, or pause-release. In vitro, endothelin-1- and, in vivo, pressure overload-induced cardiomyocyte hypertrophic growth is prevented with FoxO1 knockdown or deletion, which was accompanied by reductions in inducible genes, including in vitro and and in vivo.

Conclusions: Together, our data suggest that FoxO1 may mediate cardiac hypertrophic growth via regulation of pol II de novo recruitment and pause-release; the latter represents the majority (59%) of FoxO1-bound, pol II-regulated genes after pressure overload. These findings demonstrate the breadth of transcriptional regulation by FoxO1 during cardiac hypertrophy, information that is essential for its therapeutic targeting.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.120.046356DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484435PMC
September 2020

Melatonin Ameliorates MI-Induced Cardiac Remodeling and Apoptosis through a JNK/p53-Dependent Mechanism in Diabetes Mellitus.

Oxid Med Cell Longev 2020 9;2020:1535201. Epub 2020 Jan 9.

Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, 710032, China.

Diabetes mellitus, a worldwide health threat, is considered an independent risk factor for cardiovascular diseases. The overall cardiovascular risk of diabetes is similar to the one having one myocardial infarction (MI) attack although the precise impact of diabetes on MI-induced myocardial anomalies remains elusive. Given that mortality following MI is much greater in diabetic patients compared to nondiabetic patients, this study was designed to examine the effect of melatonin on MI injury-induced myocardial dysfunction in diabetes. Adult mice were made diabetic using high-fat feeding and streptozotocin (100 mg/kg body weight) prior to MI and were treated with melatonin (50 mg/kg/d, p.o.) for 4 weeks prior to assessment of cardiac geometry and function. The MI procedure in diabetes displayed overt changes in cardiac geometry (chamber dilation and interstitial fibrosis) and functional anomalies (reduced fractional shortening and cardiomyocyte contractile capacity) in association with elevated c-Jun N-terminal kinase (JNK) phosphorylation and p53 level. Melatonin treatment markedly attenuated cardiac dysfunction and myocardial fibrosis in post-MI diabetic mice. Furthermore, melatonin decreased JNK phosphorylation, reduced p53 levels, and suppressed apoptosis in hearts from the post-MI diabetic group. findings revealed that melatonin effectively counteracted high-glucose/high fat-hypoxia-induced cardiomyocyte apoptosis and contractile dysfunction through a JNK-mediated mechanism, the effects of which were impaired by the JNK activator anisomycin. In summary, our study suggests that melatonin protects against myocardial injury in post-MI mice with diabetes, which offers a new therapeutic strategy for the management of MI-induced cardiac injury in diabetes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2020/1535201DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7199622PMC
January 2021

Branched chain amino acids exacerbate myocardial ischemia/reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-α pathway-dependent fatty acid oxidation.

Theranostics 2020 27;10(12):5623-5640. Epub 2020 Apr 27.

Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China.

: Myocardial vulnerability to ischemia/reperfusion (I/R) injury is strictly regulated by energy substrate metabolism. Branched chain amino acids (BCAA), consisting of valine, leucine and isoleucine, are a group of essential amino acids that are highly oxidized in the heart. Elevated levels of BCAA have been implicated in the development of cardiovascular diseases; however, the role of BCAA in I/R process is not fully understood. The present study aims to determine how BCAA influence myocardial energy substrate metabolism and to further clarify the pathophysiological significance during cardiac I/R injury. : Parameters of glucose and fatty acid metabolism were measured by seahorse metabolic flux analyzer in adult mouse cardiac myocytes with or without BCAA incubation Chronic accumulation of BCAA was induced in mice receiving oral BCAA administration. A genetic mouse model with defective BCAA catabolism was also utilized. Mice were subjected to MI/R and the injury was assessed extensively at the whole-heart, cardiomyocyte, and molecular levels. : We confirmed that chronic accumulation of BCAA enhanced glycolysis and fatty acid oxidation (FAO) but suppressed glucose oxidation in adult mouse ventricular cardiomyocytes. Oral gavage of BCAA enhanced FAO in cardiac tissues, exacerbated lipid peroxidation toxicity and worsened myocardial vulnerability to I/R injury. Etomoxir, a specific inhibitor of FAO, rescued the deleterious effects of BCAA on I/R injury. Mechanistically, valine, leucine and their corresponding branched chain α-keto acid (BCKA) derivatives, but not isoleucine and its BCKA derivative, transcriptionally upregulated peroxisome proliferation-activated receptor alpha (PPAR-α). BCAA/BCKA induced PPAR-α upregulation through the general control nonderepresible-2 (GCN2)/ activating transcription factor-6 (ATF6) pathway. Finally, in a genetic mouse model with BCAA catabolic defects, chronic accumulation of BCAA increased FAO in myocardial tissues and sensitized the heart to I/R injury, which could be reversed by adenovirus-mediated PPAR-α silencing. : We identify BCAA as an important nutrition regulator of myocardial fatty acid metabolism through transcriptional upregulation of PPAR-α. Chronic accumulation of BCAA, caused by either dietary or genetic factors, renders the heart vulnerable to I/R injury via exacerbating lipid peroxidation toxicity. These data support the notion that BCAA lowering methods might be potentially effective cardioprotective strategies, especially among patients with diseases characterized by elevated levels of BCAA, such as obesity and diabetes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7150/thno.44836DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196282PMC
May 2021

Blocking the death checkpoint protein TRAIL improves cardiac function after myocardial infarction in monkeys, pigs, and rats.

Sci Transl Med 2020 04;12(540)

Henan University affiliated Huaihe Hospital, Kaifeng 475004, P.R. China.

Myocardial infarction (MI) is a leading cause of death worldwide for which there is no cure. Although cardiac cell death is a well-recognized pathological mechanism of MI, therapeutic blockade of cell death to treat MI is not straightforward. Death receptor 5 (DR5) and its ligand TRAIL [tumor necrosis factor (TNF)-related apoptosis-inducing ligand] are up-regulated in MI, but their roles in pathological remodeling are unknown. Here, we report that blocking TRAIL with a soluble DR5 immunoglobulin fusion protein diminished MI by preventing cardiac cell death and inflammation in rats, pigs, and monkeys. Mechanistically, TRAIL induced the death of cardiomyocytes and recruited and activated leukocytes, directly and indirectly causing cardiac injury. Transcriptome profiling revealed increased expression of inflammatory cytokines in infarcted heart tissue, which was markedly reduced by TRAIL blockade. Together, our findings indicate that TRAIL mediates MI directly by targeting cardiomyocytes and indirectly by affecting myeloid cells, supporting TRAIL blockade as a potential therapeutic strategy for treating MI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.aaw3172DOI Listing
April 2020

Loss of dynamic regulation of G protein-coupled receptor kinase 2 by nitric oxide leads to cardiovascular dysfunction with aging.

Am J Physiol Heart Circ Physiol 2020 05 27;318(5):H1162-H1175. Epub 2020 Mar 27.

Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.

Nitric oxide (NO) and -nitrosothiol (SNO) are considered cardio- and vasoprotective substances. We now understand that one mechanism in which NO/SNOs provide cardiovascular protection is through their direct inhibition of cardiac G protein-coupled receptor (GPCR) kinase 2 (GRK2) activity via -nitrosylation of GRK2 at cysteine 340 (C340). This maintains GPCR homeostasis, including β-adrenergic receptors, through curbing receptor GRK2-mediated desensitization. Previously, we have developed a knockin mouse (GRK2-C340S) where endogenous GRK2 is resistant to dynamic -nitrosylation, which led to increased GRK2 desensitizing activity. This unchecked regulation of cardiac GRK2 activity resulted in significantly more myocardial damage after ischemic injury that was resistant to NO-mediated cardioprotection. Although young adult GRK2-C340S mice show no overt phenotype, we now report that as these mice age, they develop significant cardiovascular dysfunction due to the loss of SNO-mediated GRK2 regulation. This pathological phenotype is apparent as early as 12 mo of age and includes reduced cardiac function, increased cardiac perivascular fibrosis, and maladaptive cardiac hypertrophy, which are common maladies found in patients with cardiovascular disease (CVD). There are also vascular reactivity and aortic abnormalities present in these mice. Therefore, our data demonstrate that a chronic and global increase in GRK2 activity is sufficient to cause cardiovascular remodeling and dysfunction, likely due to GRK2's desensitizing effects in several tissues. Because GRK2 levels have been reported to be elevated in elderly CVD patients, GRK2-C340 mice can give insight into the aged-molecular landscape leading to CVD. Research on G protein-coupled receptor kinase 2 (GRK2) in the setting of cardiovascular aging is largely unknown despite its strong established functions in cardiovascular physiology and pathophysiology. This study uses a mouse model of chronic GRK2 overactivity to further investigate the consequences of long-term GRK2 on cardiac function and structure. We report for the first time that chronic GRK2 overactivity was able to cause cardiac dysfunction and remodeling independent of surgical intervention, highlighting the importance of GRK activity in aged-related heart disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00094.2020DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7346533PMC
May 2020

N-Cadherin Overexpression Mobilizes the Protective Effects of Mesenchymal Stromal Cells Against Ischemic Heart Injury Through a β-Catenin-Dependent Manner.

Circ Res 2020 03 21;126(7):857-874. Epub 2020 Feb 21.

From the Department of Cardiology, Xijing Hospital (W.Y., C. Lin, Y.G., Y.C., Y.X., F.Z., R.S., C. Li, L.T.), Fourth Military Medical University, China.

Rationale: Mesenchymal stromal cell-based therapy is promising against ischemic heart failure. However, its efficacy is limited due to low cell retention and poor paracrine function. A transmembrane protein capable of enhancing cell-cell adhesion, N-cadherin garnered attention in the field of stem cell biology only recently.

Objective: The current study investigates whether and how N-cadherin may regulate mesenchymal stromal cells retention and cardioprotective capability against ischemic heart failure.

Methods And Results: Adult mice-derived adipose tissue-derived mesenchymal stromal cells (ADSC) were transfected with adenovirus harboring N-cadherin, T-cadherin, or control adenovirus. CM-DiI-labeled ADSC were intramyocardially injected into the infarct border zone at 3 sites immediately after myocardial infarction (MI) or myocardial ischemia/reperfusion. ADSC retention/survival, cardiomyocyte apoptosis/proliferation, capillary density, cardiac fibrosis, and cardiac function were determined. Discovery-driven/cause-effect analysis was used to determine the molecular mechanisms. Compared with ADSC transfected with adenovirus-control, N-cadherin overexpression (but not T-cadherin) markedly increased engrafted ADSC survival/retention up to 7 days post-MI. Histological analysis revealed that ADSC transfected with adenovirus-N-cadherin significantly preserved capillary density and increased cardiomyocyte proliferation and moderately reduced cardiomyocyte apoptosis 3 days post-MI. More importantly, ADSC transfected with adenovirus-N-cadherin (but not ADSC transfected with adenovirus-T-cadherin) significantly increased left ventricular ejection fraction and reduced fibrosis in both MI and myocardial ischemia/reperfusion mice. In vitro experiments demonstrated that N-cadherin overexpression promoted ADSC-cardiomyocyte adhesion and ADSC migration, enhancing their capability to increase angiogenesis and cardiomyocyte proliferation. MMP (matrix metallopeptidases)-10/13 and HGF (hepatocyte growth factor) upregulation is responsible for N-cadherin's effect upon ADSC migration and paracrine angiogenesis. N-cadherin overexpression promotes cardiomyocyte proliferation by HGF release. Mechanistically, N-cadherin overexpression significantly increased N-cadherin/β-catenin complex formation and active β-catenin levels in the nucleus. β-catenin knockdown abolished N-cadherin overexpression-induced MMP-10, MMP-13, and HGF expression and blocked the cellular actions and cardioprotective effects of ADSC overexpressing N-cadherin.

Conclusions: We demonstrate for the first time that N-cadherin overexpression enhances mesenchymal stromal cells-protective effects against ischemic heart failure via β-catenin-mediated MMP-10/MMP-13/HGF expression and production, promoting ADSC/cardiomyocyte adhesion and ADSC retention.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.119.315806DOI Listing
March 2020

Tailorable Hydrogel Improves Retention and Cardioprotection of Intramyocardial Transplanted Mesenchymal Stem Cells for the Treatment of Acute Myocardial Infarction in Mice.

J Am Heart Assoc 2020 01 18;9(2):e013784. Epub 2020 Jan 18.

Department of Cardiology Xijing Hospital Fourth Military Medical University Xi'an China.

Background Poor engraftment of intramyocardial stem cells limits their therapeutic efficiency against myocardial infarction (MI)-induced cardiac injury. Transglutaminase cross-linked Gelatin (Col-Tgel) is a tailorable collagen-based hydrogel that is becoming an excellent biomaterial scaffold for cellular delivery in vivo. Here, we tested the hypothesis that Col-Tgel increases retention of intramyocardially-injected stem cells, and thereby reduces post-MI cardiac injury. Methods and Results Adipose-derived mesenchymal stem cells (ADSCs) were co-cultured with Col-Tgel in a 3-dimensional system in vitro, and Col-Tgel encapsulated ADSCs were observed using scanning electron microscopy and confocal microscopy. Vitality, proliferation, and migration of co-cultured ADSCs were evaluated. In addition, mice were subjected to MI and were intramyocardially injected with ADSCs, Col-Tgel, or a combination thereof. ADSCs engraftment, survival, cardiac function, and fibrosis were assessed. In vitro MTT and Cell Counting Kit-8 assays demonstrated that ADSCs survive and proliferate up to 4 weeks in the Col-Tgel. In addition, MTT and transwell assays showed that ADSCs migrate outside the edge of the Col-Tgel sphere. Furthermore, when compared with ADSCs alone, Col-Tgel-encapsulated ADSCs significantly enhanced the long-term retention and cardioprotective effect of ADSCs against MI-induced cardiac injury. Conclusions In the current study, we successfully established a 3-dimensional co-culture system using ADSCs and Col-Tgel. The Col-Tgel creates a suitable microenvironment for long-term retention of ADSCs in an ischemic area, and thereby enhances their cardioprotective effects. Taken together, this study may provide an alternative biomaterial for stem cell-based therapy to treat ischemic heart diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/JAHA.119.013784DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033822PMC
January 2020

Isolation Methods for Human CD34 Subsets Using Fluorescent and Magnetic Activated Cell Sorting: an In Vivo Comparative Study.

Stem Cell Rev Rep 2020 04;16(2):413-423

Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA.

Introduction: Acute myocardial infarction (AMI) and resulting cardiac damage and heart failure are leading causes of morbidity and mortality worldwide. Multiple studies have examined the utility of CD34 cells for the treatment of acute and ischemic heart disease. However, the optimal strategy to enrich CD34 cells from clinical sources is not known. We examined the efficacy of fluorescence activated cell sorting (FACS) and magnetic beads cell sorting (MACS) methods for CD34 cell isolation from mobilized human mononuclear peripheral blood cells (mhPBMNCs).

Methods: mhPBCs were processed following acquisition using FACS or MACS according to clinically established protocols. Cell viability, CD34 cell purity and characterization of surface marker expression were assessed using a flow cytometer. For in vivo characterization of cardiac repair, we conducted LAD ligation surgery on 8-10 weeks female NOD/SCID mice followed by intramyocardial transplantation of unselected mhPBMNCs, FACS or MACS enriched CD34 cells.

Results: Both MACS and FACS isolation methods achieved high purity rates, viability, and enrichment of CD34 cells. In vivo studies following myocardial infarction demonstrated retention of CD34 in the peri-infarct region for up to 30 days after transplantation. Retained CD34 cells were associated with enhanced angiogenesis and reduced inflammation compared to unselected mhPBMNCs or PBS treatment arms. Cardiac scar and fibrosis as assessed by immunohistochemistry were reduced in FACS and MACS CD34 treatment groups. Finally, reduced scar and augmented angiogenesis resulted in improved cardiac functional recovery, both on the global and regional function and remodeling assessments by echocardiography.

Conclusion: Cell based therapy using enriched CD34 cells sorted by FACS or MACS result in better cardiac recovery after ischemic injury compared to unselected mhPBMNCs. Both enrichment techniques offer excellent recovery and purity and can be equally used for clinical applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12015-019-09939-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469922PMC
April 2020

Small Extracellular Microvesicles Mediated Pathological Communications Between Dysfunctional Adipocytes and Cardiomyocytes as a Novel Mechanism Exacerbating Ischemia/Reperfusion Injury in Diabetic Mice.

Circulation 2020 03 10;141(12):968-983. Epub 2020 Jan 10.

Department of Emergency Medicine and Medicine, Thomas Jefferson University, Philadelphia, PA (L.G., D.X., J.L, W.B.L., T.A.C., B.L., L.Z., X.-L.M., Y.W.).

Background: Diabetes mellitus exacerbates myocardial ischemia/reperfusion (MI/R) injury by incompletely understood mechanisms. Adipocyte dysfunction contributes to remote organ injury. However, the molecular mechanisms linking dysfunctional adipocytes to increased MI/R injury remain unidentified. The current study attempted to clarify whether and how small extracellular vesicles (sEV) may mediate pathological communication between diabetic adipocytes and cardiomyocytes, exacerbating MI/R injury.

Methods: Adult male mice were fed a normal or a high-fat diet for 12 weeks. sEV (from diabetic serum, diabetic adipocytes, or high glucose/high lipid-challenged nondiabetic adipocytes) were injected intramyocardially distal of coronary ligation. Animals were subjected to MI/R 48 hours after injection.

Results: Intramyocardial injection of diabetic serum sEV in the nondiabetic heart significantly exacerbated MI/R injury, as evidenced by poorer cardiac function recovery, larger infarct size, and greater cardiomyocyte apoptosis. Similarly, intramyocardial or systemic administration of diabetic adipocyte sEV or high glucose/high lipid-challenged nondiabetic adipocyte sEV significantly exacerbated MI/R injury. Diabetic epididymal fat transplantation significantly increased MI/R injury in nondiabetic mice, whereas administration of a sEV biogenesis inhibitor significantly mitigated MI/R injury in diabetic mice. A mechanistic investigation identified that miR-130b-3p is a common molecule significantly increased in diabetic serum sEV, diabetic adipocyte sEV, and high glucose/high lipid-challenged nondiabetic adipocyte sEV. Mature (but not primary) miR-130b-3p was significantly increased in the diabetic and nondiabetic heart subjected to diabetic sEV injection. Whereas intramyocardial injection of a miR-130b-3p mimic significantly exacerbated MI/R injury in nondiabetic mice, miR-130b-3p inhibitors significantly attenuated MI/R injury in diabetic mice. Molecular studies identified AMPKα1/α2, Birc6, and Ucp3 as direct downstream targets of miR-130b-3p. Overexpression of these molecules (particularly AMPKα2) reversed miR-130b-3p induced proapoptotic/cardiac harmful effect. Finally, miR-130b-3p levels were significantly increased in plasma sEV from patients with type 2 diabetes mellitus. Incubation of cardiomyocytes with diabetic patient sEV significantly exacerbated ischemic injury, an effect blocked by miR-130b-3p inhibitor.

Conclusions: We demonstrate for the first time that miR-130b-3p enrichment in dysfunctional adipocyte-derived sEV, and its suppression of multiple antiapoptotic/cardioprotective molecules in cardiomyocytes, is a novel mechanism exacerbating MI/R injury in the diabetic heart. Targeting miR-130b-3p mediated pathological communication between dysfunctional adipocytes and cardiomyocytes may be a novel strategy attenuating diabetic exacerbation of MI/R injury.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.119.042640DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7093230PMC
March 2020

Sevoflurane Pre-conditioning Ameliorates Diabetic Myocardial Ischemia/Reperfusion Injury Via Differential Regulation of p38 and ERK.

Sci Rep 2020 01 8;10(1):23. Epub 2020 Jan 8.

Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA.

Diabetes mellitus (DM) significantly increases myocardial ischemia/reperfusion (MI/R) injury. During DM, cardioprotection induced by conventional pre-conditioning (PreCon) is decreased due to impaired AMP-activated protein kinase (AMPK) signaling. The current study investigated whether PreCon with inhaled anesthetic sevoflurane (SF-PreCon) remains cardioprotective during DM, and identified the involved mechanisms. Normal diet (ND) and high-fat diet (HFD)-induced DM mice were randomized into control and SF-PreCon (3 cycles of 15-minute period exposures to 2% sevoflurane) groups before MI/R. SF-PreCon markedly reduced MI/R injury in DM mice, as evidenced by improved cardiac function (increased LVEF and ±Dp/dt), decreased infarct size, and decreased apoptosis. To determine the relevant role of AMPK, the effect of SF-PreCon was determined in cardiac-specific AMPKα2 dominant negative expressing mice (AMPK-DN). SF-PreCon decreased MI/R injury in AMPK-DN mice. To explore the molecular mechanisms responsible for SF-PreCon mediated cardioprotection in DM mice, cell survival molecules were screened. Interestingly, in ND mice, SF-PreCon significantly reduced MI/R-induced activation of p38, a pro-death MAPK, without altering ERK and JNK. In DM and AMPK-DN mice, the inhibitory effect of SF-PreCon upon p38 activation was significantly blunted. However, SF-PreCon significantly increased phosphorylation of ERK1/2, a pro-survival MAPK in DM and AMPK-DN mice. We demonstrate that SF-PreCon protects the heart via AMPK-dependent inhibition of pro-death MAPK in ND mice. However, SF-PreCon exerts cardioprotective action via AMPK-independent activation of a pro-survival MAPK member in DM mice. SF-PreCon may be beneficial compared to conventional PreCon in diabetes or clinical scenarios in which AMPK signaling is impaired.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-56897-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949279PMC
January 2020

Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis.

Nat Commun 2019 09 20;10(1):4317. Epub 2019 Sep 20.

Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.

Circular RNAs are generated from many protein-coding genes, but their role in cardiovascular health and disease states remains unknown. Here we report identification of circRNA transcripts that are differentially expressed in post myocardial infarction (MI) mouse hearts including circFndc3b which is significantly down-regulated in the post-MI hearts. Notably, the human circFndc3b ortholog is also significantly down-regulated in cardiac tissues of ischemic cardiomyopathy patients. Overexpression of circFndc3b in cardiac endothelial cells increases vascular endothelial growth factor-A expression and enhances their angiogenic activity and reduces cardiomyocytes and endothelial cell apoptosis. Adeno-associated virus 9 -mediated cardiac overexpression of circFndc3b in post-MI hearts reduces cardiomyocyte apoptosis, enhances neovascularization and improves left ventricular functions. Mechanistically, circFndc3b interacts with the RNA binding protein Fused in Sarcoma to regulate VEGF expression and signaling. These findings highlight a physiological role for circRNAs in cardiac repair and indicate that modulation of circFndc3b expression may represent a potential strategy to promote cardiac function and remodeling after MI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-11777-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6754461PMC
September 2019
-->