Publications by authors named "Emmy Dolman"

23 Publications

  • Page 1 of 1

High-throughput drug screening reveals Pyrvinium pamoate as effective candidate against pediatric MLL-rearranged acute myeloid leukemia.

Transl Oncol 2021 Mar 2;14(5):101048. Epub 2021 Mar 2.

Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands. Electronic address:

Pediatric MLL-rearranged acute myeloid leukemia (AML) has a generally unfavorable outcome, primarily due to relapse and drug resistance. To overcome these difficulties, new therapeutic agents are urgently needed. Yet, implementing novel drugs for clinical use is a time-consuming, laborious, costly and high-risk process. Therefore, we applied a drug-repositioning strategy by screening drug libraries, comprised of >4000 compounds that are mostly FDA-approved, in a high-throughput format on primary MLL-rearranged AML cells. Here we identified pyrvinium pamoate (pyrvinium) as a novel candidate drug effective against MLL-rearranged AML, eliminating all cell viability at <1000 nM. Additional screening of identified drug hits on non-leukemic bone marrow samples, resulted in a decrease in cell viability of ∼50% at 1000 nM pyrvinium, suggesting a therapeutic window for targeting leukemic cells specifically. Validation of pyrvinium on an extensive panel of AML cell lines and primary AML samples showed comparable viabilities as the drug screen data, with pyrvinium achieving IC values of <80 nM in these samples. Remarkably, pyrvinium also induced cell toxicity in primary MLL-AF10 AML cells, an MLL-rearrangement associated with a poor outcome. While pyrvinium is able to inhibit the Wnt pathway in other diseases, this unlikely explains the efficacy we observed as β-catenin was not expressed in the AML cells tested. Rather, we show that pyrvinium co-localized with the mitochondrial stain in cells, and hence may act by inhibiting mitochondrial respiration. Overall, this study shows that pyrvinium is highly effective against MLL-rearranged AML in vitro, and therefore represents a novel potential candidate for further studies in MLL-rearranged AML.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tranon.2021.101048DOI Listing
March 2021

Combined targeting of the p53 and pRb pathway in neuroblastoma does not lead to synergistic responses.

Eur J Cancer 2021 Jan 13;142:1-9. Epub 2020 Nov 13.

Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands. Electronic address:

Background: Despite intensive treatment protocols and recent advances, neuroblastomas still account for approximately 15% of all childhood cancer deaths. In contrast with adult cancers, p53 pathway inactivation in neuroblastomas is rarely caused by p53 mutation but rather by altered MDM2 or p14ARF expression. Moreover, neuroblastomas are characterised by high proliferation rates, frequently triggered by pRb pathway dysfunction due to aberrant expression of cyclin D1, CDK4 or p16INK4a. Simultaneous disturbance of these pathways can occur via co-amplification of MDM2 and CDK4 or homozygous deletion of CDKN2A, which encodes both p14ARF and p16INK4a.

Methods And Results: We examined whether both single and combined inhibition of MDM2 and CDK4/6 is effective in reducing neuroblastoma cell viability. In our panel of ten cell lines with a spectrum of aberrations in the p53 and pRb pathway, idasanutlin and abemaciclib were the most potent MDM2 and CDK4/6 inhibitors, respectively. No correlation was observed between the genetic background and response to the single inhibitors. We confirmed this lack of correlation in isogenic systems overexpressing MDM2 and/or CDK4. In addition, combined inhibition did not result in synergistic effects. Instead, abemaciclib diminished the pro-apoptotic effect of idasanutlin, leading to slightly antagonistic effects. In vivo treatment with idasanutlin and abemaciclib led to reduced tumour growth compared with single drug treatment, but no synergistic response was observed.

Conclusion: We conclude that p53 and pRb pathway aberrations cannot be used as predictive biomarkers for neuroblastoma sensitivity to MDM2 and/or CDK4/6 inhibitors. Moreover, we advise to be cautious with combining these inhibitors in neuroblastomas.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejca.2020.10.009DOI Listing
January 2021

Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer.

Nat Med 2020 11 5;26(11):1742-1753. Epub 2020 Oct 5.

Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia.

The Zero Childhood Cancer Program is a precision medicine program to benefit children with poor-outcome, rare, relapsed or refractory cancer. Using tumor and germline whole genome sequencing (WGS) and RNA sequencing (RNAseq) across 252 tumors from high-risk pediatric patients with cancer, we identified 968 reportable molecular aberrations (39.9% in WGS and RNAseq, 35.1% in WGS only and 25.0% in RNAseq only). Of these patients, 93.7% had at least one germline or somatic aberration, 71.4% had therapeutic targets and 5.2% had a change in diagnosis. WGS identified pathogenic cancer-predisposing variants in 16.2% of patients. In 76 central nervous system tumors, methylome analysis confirmed diagnosis in 71.1% of patients and contributed to a change of diagnosis in two patients (2.6%). To date, 43 patients have received a recommended therapy, 38 of whom could be evaluated, with 31% showing objective evidence of clinical benefit. Comprehensive molecular profiling resolved the molecular basis of virtually all high-risk cancers, leading to clinical benefit in some patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-020-1072-4DOI Listing
November 2020

Therapeutic vulnerabilities in the DNA damage response for the treatment of ATRX mutant neuroblastoma.

EBioMedicine 2020 Sep 23;59:102971. Epub 2020 Aug 23.

Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom; Children and Young People's Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT United Kingdom.

Background: In neuroblastoma, genetic alterations in ATRX, define a distinct poor outcome patient subgroup. Despite the need for new therapies, there is a lack of available models and a dearth of pre-clinical research.

Methods: To evaluate the impact of ATRX loss of function (LoF) in neuroblastoma, we utilized CRISPR-Cas9 gene editing to generate neuroblastoma cell lines isogenic for ATRX. We used these and other models to identify therapeutically exploitable synthetic lethal vulnerabilities associated with ATRX LoF.

Findings: In isogenic cell lines, we found that ATRX inactivation results in increased DNA damage, homologous recombination repair (HRR) defects and impaired replication fork processivity. In keeping with this, high-throughput compound screening showed selective sensitivity in ATRX mutant cells to multiple PARP inhibitors and the ATM inhibitor KU60019. ATRX mutant cells also showed selective sensitivity to the DNA damaging agents, sapacitabine and irinotecan. HRR deficiency was also seen in the ATRX deleted CHLA-90 cell line, and significant sensitivity demonstrated to olaparib/irinotecan combination therapy in all ATRX LoF models. In-vivo sensitivity to olaparib/irinotecan was seen in ATRX mutant but not wild-type xenografts. Finally, sustained responses to olaparib/irinotecan therapy were seen in an ATRX deleted neuroblastoma patient derived xenograft.

Interpretation: ATRX LoF results in specific DNA damage repair defects that can be therapeutically exploited. In ATRX LoF models, preclinical sensitivity is demonstrated to olaparib and irinotecan, a combination that can be rapidly translated into the clinic.

Funding: This work was supported by Christopher's Smile, Neuroblastoma UK, Cancer Research UK, and the Royal Marsden Hospital NIHR BRC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ebiom.2020.102971DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7452577PMC
September 2020

Accelerating drug development for neuroblastoma: Summary of the Second Neuroblastoma Drug Development Strategy forum from Innovative Therapies for Children with Cancer and International Society of Paediatric Oncology Europe Neuroblastoma.

Eur J Cancer 2020 09 9;136:52-68. Epub 2020 Jul 9.

Paediatric Drug Development, Children & Young People's Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK; Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, Sutton, UK.

Only one class of targeted agents (anti-GD2 antibodies) has been incorporated into front-line therapy for neuroblastoma since the 1980s. The Neuroblastoma New Drug Development Strategy (NDDS) initiative commenced in 2012 to accelerate the development of new drugs for neuroblastoma. Advances have occurred, with eight of nine high-priority targets being evaluated in paediatric trials including anaplastic lymphoma kinase inhibitors being investigated in front-line, but significant challenges remain. This article reports the conclusions of the second NDDS forum, which expanded across the Atlantic to further develop the initiative. Pre-clinical and clinical data for 40 genetic targets and mechanisms of action were prioritised and drugs were identified for early-phase trials. Strategies to develop drugs targeting TERT, telomere maintenance, ATRX, alternative lengthening of telomeres (ALT), BRIP1 and RRM2 as well as direct targeting of MYCN are high priority and should be championed for drug discovery. Promising pre-clinical data suggest that targeting of ALT by ATM or PARP inhibition may be potential strategies. Drugs targeting CDK2/9, CDK7, ATR and telomere maintenance should enter paediatric clinical development rapidly. Optimising the response to anti-GD2 by combinations with chemotherapy, targeted agents and other immunological targets are crucial. Delivering this strategy in the face of small patient cohorts, genomically defined subpopulations and a large number of permutations of combination trials, demands even greater international collaboration. In conclusion, the NDDS provides an internationally agreed, biologically driven selection of prioritised genetic targets and drugs. Improvements in the strategy for conducting trials in neuroblastoma will accelerate bringing these new drugs more rapidly to front-line therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejca.2020.05.010DOI Listing
September 2020

An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity.

Nat Commun 2020 03 11;11(1):1310. Epub 2020 Mar 11.

Oncode Institute, Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.

Kidney tumours are among the most common solid tumours in children, comprising distinct subtypes differing in many aspects, including cell-of-origin, genetics, and pathology. Pre-clinical cell models capturing the disease heterogeneity are currently lacking. Here, we describe the first paediatric cancer organoid biobank. It contains tumour and matching normal kidney organoids from over 50 children with different subtypes of kidney cancer, including Wilms tumours, malignant rhabdoid tumours, renal cell carcinomas, and congenital mesoblastic nephromas. Paediatric kidney tumour organoids retain key properties of native tumours, useful for revealing patient-specific drug sensitivities. Using single cell RNA-sequencing and high resolution 3D imaging, we further demonstrate that organoid cultures derived from Wilms tumours consist of multiple different cell types, including epithelial, stromal and blastemal-like cells. Our organoid biobank captures the heterogeneity of paediatric kidney tumours, providing a representative collection of well-characterised models for basic cancer research, drug-screening and personalised medicine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-15155-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7066173PMC
March 2020

ALK positively regulates MYCN activity through repression of HBP1 expression.

Oncogene 2019 04 11;38(15):2690-2705. Epub 2018 Dec 11.

Center for Medical Genetics Ghent (CMGG), Ghent University, Ghent, Belgium.

ALK mutations occur in 10% of primary neuroblastomas and represent a major target for precision treatment. In combination with MYCN amplification, ALK mutations infer an ultra-high-risk phenotype resulting in very poor patient prognosis. To open up opportunities for future precision drugging, a deeper understanding of the molecular consequences of constitutive ALK signaling and its relationship to MYCN activity in this aggressive pediatric tumor entity will be essential. We show that mutant ALK downregulates the 'HMG-box transcription factor 1' (HBP1) through the PIK-AKT-FOXO3a signaling axis. HBP1 inhibits both the transcriptional activating and repressing activity of MYCN, the latter being mediated through PRC2 activity. HBP1 itself is under negative control of MYCN through miR-17~92. Combined targeting of HBP1 by PIK antagonists and MYCN signaling by BET- or HDAC-inhibitors blocks MYCN activity and significantly reduces tumor growth, suggesting a novel targeted therapy option for high-risk neuroblastoma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41388-018-0595-3DOI Listing
April 2019

TBX2 is a neuroblastoma core regulatory circuitry component enhancing MYCN/FOXM1 reactivation of DREAM targets.

Nat Commun 2018 11 19;9(1):4866. Epub 2018 Nov 19.

Center for Medical Genetics, Ghent University, Ghent, 9000, Belgium.

Chromosome 17q gains are almost invariably present in high-risk neuroblastoma cases. Here, we perform an integrative epigenomics search for dosage-sensitive transcription factors on 17q marked by H3K27ac defined super-enhancers and identify TBX2 as top candidate gene. We show that TBX2 is a constituent of the recently established core regulatory circuitry in neuroblastoma with features of a cell identity transcription factor, driving proliferation through activation of p21-DREAM repressed FOXM1 target genes. Combined MYCN/TBX2 knockdown enforces cell growth arrest suggesting that TBX2 enhances MYCN sustained activation of FOXM1 targets. Targeting transcriptional addiction by combined CDK7 and BET bromodomain inhibition shows synergistic effects on cell viability with strong repressive effects on CRC gene expression and p53 pathway response as well as several genes implicated in transcriptional regulation. In conclusion, we provide insight into the role of the TBX2 CRC gene in transcriptional dependency of neuroblastoma cells warranting clinical trials using BET and CDK7 inhibitors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-06699-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242972PMC
November 2018

Anti-GD2 Immunoliposomes for Targeted Delivery of the Survivin Inhibitor Sepantronium Bromide (YM155) to Neuroblastoma Tumor Cells.

Pharm Res 2018 Mar 7;35(4):85. Epub 2018 Mar 7.

Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.

Purpose: Sepantronium bromide (YM155) is a hydrophilic quaternary compound that cannot be administered orally due to its low oral bioavailability; it is furthermore rapidly eliminated via the kidneys. The current study aims at improving the pharmacokinetic profile of YM155 by its formulation in immunoliposomes that can achieve its enhanced delivery into tumor tissue and facilitate uptake in neuroblastoma cancer cells.

Methods: PEGylated YM155 loaded liposomes composed of DPPC, cholesterol and DSPE-PEG were prepared via passive film-hydration and extrusion method. Targeted (i.e. immuno-)liposomes were prepared by surface functionalization with SATA modified monoclonal anti-disialoganglioside (GD2) antibodies. Liposomes were characterized based on their size, charge, antibody coupling and YM155 encapsulation efficiency, and stability. Flow cytometry analysis and confocal microscopy were performed on IMR32 and KCNR neuroblastoma cell lines. The efficacy of developed formulations were assessed by in-vitro toxicity assays. A pilot pharmacokinetic analysis was performed to assess plasma circulation and tumor accumulation profiles of the developed liposomal formulations.

Results: YM155 loaded immunoliposomes had a size of 170 nm and zeta potential of -10 mV, with an antibody coupling efficiency of 60% andYM155 encapsulation efficiency of14%. Targeted and control liposomal formulations were found to have similar YM155 release rates in a release medium containing 50% serum. An in-vitro toxicity study on KCNR cells showed less toxicity for immunoliposomes as compared to free YM155. In-vivo pharmacokinetic evaluation of YM155 liposomes showed prolonged blood circulation and significantly increased half-lives of liposomal YM155 in tumor tissue, as compared to a bolus injection of free YM155.

Conclusions: YM155 loaded immunoliposomes were successfully formulated and characterized, and initial in-vivo results show their potential for improving the circulation time and tumor accumulation of YM155.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-018-2373-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842274PMC
March 2018

Enhancer of zeste homologue 2 plays an important role in neuroblastoma cell survival independent of its histone methyltransferase activity.

Eur J Cancer 2017 04 17;75:63-72. Epub 2017 Feb 17.

Department of Translational Medicine, Prinses Máxima Center for Pediatric Oncology, Utrecht, The Netherlands. Electronic address:

Neuroblastoma is predominantly characterised by chromosomal rearrangements. Next to V-Myc Avian Myelocytomatosis Viral Oncogene Neuroblastoma Derived Homolog (MYCN) amplification, chromosome 7 and 17q gains are frequently observed. We identified a neuroblastoma patient with a regional 7q36 gain, encompassing the enhancer of zeste homologue 2 (EZH2) gene. EZH2 is the histone methyltransferase of lysine 27 of histone H3 (H3K27me3) that forms the catalytic subunit of the polycomb repressive complex 2. H3K27me3 is commonly associated with the silencing of genes involved in cellular processes such as cell cycle regulation, cellular differentiation and cancer. High EZH2 expression correlated with poor prognosis and overall survival independent of MYCN amplification status. Unexpectedly, treatment of 3 EZH2-high expressing neuroblastoma cell lines (IMR32, CHP134 and NMB), with EZH2-specific inhibitors (GSK126 and EPZ6438) resulted in only a slight G1 arrest, despite maximum histone methyltransferase activity inhibition. Furthermore, colony formation in cell lines treated with the inhibitors was reduced only at concentrations much higher than necessary for complete inhibition of EZH2 histone methyltransferase activity. Knockdown of the complete protein with three independent shRNAs resulted in a strong apoptotic response and decreased cyclin D1 levels. This apoptotic response could be rescued by overexpressing EZH2ΔSET, a truncated form of wild-type EZH2 lacking the SET transactivation domain necessary for histone methyltransferase activity. Our findings suggest that high EZH2 expression, at least in neuroblastoma, has a survival function independent of its methyltransferase activity. This important finding highlights the need for studies on EZH2 beyond its methyltransferase function and the requirement for compounds that will target EZH2 as a complete protein.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejca.2016.12.019DOI Listing
April 2017

High efficacy of the BCL-2 inhibitor ABT199 (venetoclax) in BCL-2 high-expressing neuroblastoma cell lines and xenografts and rational for combination with MCL-1 inhibition.

Oncotarget 2016 May;7(19):27946-58

Department of Oncogenomics, University of Amsterdam, Amsterdam, The Netherlands.

The anti-apoptotic protein B cell lymphoma/leukaemia 2 (BCL-2) is highly expressed in neuroblastoma and plays an important role in oncogenesis. In this study, the selective BCL-2 inhibitor ABT199 was tested in a panel of neuroblastoma cell lines with diverse expression levels of BCL-2 and other BCL-2 family proteins. ABT199 caused apoptosis more potently in neuroblastoma cell lines expressing high BCL-2 and BIM/BCL-2 complex levels than low expressing cell lines. Effects on cell viability correlated with effects on BIM displacement from BCL-2 and cytochrome c release from the mitochondria. ABT199 treatment of mice with neuroblastoma tumors expressing high BCL-2 levels only resulted in growth inhibition, despite maximum BIM displacement from BCL-2 and the induction of a strong apoptotic response. We showed that neuroblastoma cells might survive ABT199 treatment due to its acute upregulation of the anti-apoptotic BCL-2 family protein myeloid cell leukaemia sequence 1 (MCL-1) and BIM sequestration by MCL-1. In vitro inhibition of MCL-1 sensitized neuroblastoma cell lines to ABT199, confirming the pivotal role of MCL-1 in ABT199 resistance. Our findings suggest that neuroblastoma patients with high BCL-2 and BIM/BCL-2 complex levels might benefit from combination treatment with ABT199 and compounds that inhibit MCL-1 expression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053701PMC
http://dx.doi.org/10.18632/oncotarget.8547DOI Listing
May 2016

DNA-Dependent Protein Kinase As Molecular Target for Radiosensitization of Neuroblastoma Cells.

PLoS One 2015 30;10(12):e0145744. Epub 2015 Dec 30.

Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.

Tumor cells might resist therapy with ionizing radiation (IR) by non-homologous end-joining (NHEJ) of IR-induced double-strand breaks. One of the key players in NHEJ is DNA-dependent protein kinase (DNA-PK). The catalytic subunit of DNA-PK, i.e. DNA-PKcs, can be inhibited with the small-molecule inhibitor NU7026. In the current study, the in vitro potential of NU7026 to radiosensitize neuroblastoma cells was investigated. DNA-PKcs is encoded by the PRKDC (protein kinase, DNA-activated, catalytic polypeptide) gene. We showed that PRKDC levels were enhanced in neuroblastoma patients and correlated with a more advanced tumor stage and poor prognosis, making DNA-PKcs an interesting target for radiosensitization of neuroblastoma tumors. Optimal dose finding for combination treatment with NU7026 and IR was performed using NGP cells. One hour pre-treatment with 10 μM NU7026 synergistically sensitized NGP cells to 0.63 Gy IR. Radiosensitizing effects of NU7026 increased in time, with maximum effects observed from 96 h after IR-exposure on. Combined treatment of NGP cells with 10 μM NU7026 and 0.63 Gy IR resulted in apoptosis, while no apoptotic response was observed for either of the therapies alone. Inhibition of IR-induced DNA-PK activation by NU7026 confirmed the capability of NGP cells to, at least partially, resist IR by NHEJ. NU7026 also synergistically radiosensitized other neuroblastoma cell lines, while no synergistic effect was observed for low DNA-PKcs-expressing non-cancerous fibroblasts. Results obtained for NU7026 were confirmed by PRKDC knockdown in NGP cells. Taken together, the current study shows that DNA-PKcs is a promising target for neuroblastoma radiosensitization.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145744PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4696738PMC
June 2016

Cyclin-Dependent Kinase Inhibitor AT7519 as a Potential Drug for MYCN-Dependent Neuroblastoma.

Clin Cancer Res 2015 Nov 22;21(22):5100-9. Epub 2015 Jul 22.

Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.

Purpose: MYCN-dependent neuroblastomas have low cure rates with current multimodal treatment regimens and novel therapeutic drugs are therefore urgently needed. In previous preclinical studies, we have shown that targeted inhibition of cyclin-dependent kinase 2 (CDK2) resulted in specific killing of MYCN-amplified neuroblastoma cells. This study describes the in vivo preclinical evaluation of the CDK inhibitor AT7519.

Experimental Design: Preclinical drug testing was performed using a panel of MYCN-amplified and MYCN single copy neuroblastoma cell lines and different MYCN-dependent mouse models of neuroblastoma.

Results: AT7519 killed MYCN-amplified neuroblastoma cell lines more potently than MYCN single copy cell lines with a median LC50 value of 1.7 compared to 8.1 μmol/L (P = 0.0053) and a significantly stronger induction of apoptosis. Preclinical studies in female NMRI homozygous (nu/nu) mice with neuroblastoma patient-derived MYCN-amplified AMC711T xenografts revealed dose-dependent growth inhibition, which correlated with intratumoral AT7519 levels. CDK2 target inhibition by AT7519 was confirmed by significant reductions in levels of phosphorylated retinoblastoma (p-Rb) and nucleophosmin (p-NPM). AT7519 treatment of Th-MYCN transgenic mice resulted in improved survival and clinically significant tumor regression (average tumor size reduction of 86% at day 7 after treatment initiation). The improved efficacy of AT7519 observed in Th-MYCN mice correlated with higher tumor exposure to the drug.

Conclusions: This study strongly suggests that AT7519 is a promising drug for the treatment of high-risk neuroblastoma patients with MYCN amplification.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-15-0313DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4645454PMC
November 2015

Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations.

Nat Genet 2015 08 29;47(8):864-71. Epub 2015 Jun 29.

1] Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA. [2] Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA. [3] Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.

The majority of patients with neuroblastoma have tumors that initially respond to chemotherapy, but a large proportion will experience therapy-resistant relapses. The molecular basis of this aggressive phenotype is unknown. Whole-genome sequencing of 23 paired diagnostic and relapse neuroblastomas showed clonal evolution from the diagnostic tumor, with a median of 29 somatic mutations unique to the relapse sample. Eighteen of the 23 relapse tumors (78%) showed mutations predicted to activate the RAS-MAPK pathway. Seven of these events were detected only in the relapse tumor, whereas the others showed clonal enrichment. In neuroblastoma cell lines, we also detected a high frequency of activating mutations in the RAS-MAPK pathway (11/18; 61%), and these lesions predicted sensitivity to MEK inhibition in vitro and in vivo. Our findings provide a rationale for genetic characterization of relapse neuroblastomas and show that RAS-MAPK pathway mutations may function as a biomarker for new therapeutic approaches to refractory disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3333DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4775079PMC
August 2015

Liquid chromatography-tandem mass spectrometric assay for the PI3K/mTOR inhibitor GSK2126458 in mouse plasma and tumor homogenate.

J Pharm Biomed Anal 2015 Mar 19;107:403-8. Epub 2015 Jan 19.

Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands. Electronic address:

A quantitative bioanalytical liquid chromatography-tandem mass spectrometric (LC-MS/MS) assay for GSK2126458, a dual PI3K/mTOR inhibitor, was developed and validated. Plasma and tumor homogenate samples were pre-treated using protein precipitation with acetonitrile containing dabrafenib as internal standard. After dilution with water, the extract was directly injected into the reversed-phase liquid chromatographic system. The eluate was transferred into the electrospray interface with positive ionization and compounds were detected in the selected reaction monitoring mode of a triple quadrupole mass spectrometer. The assay was completely validated for plasma in a 4-4000 ng/ml calibration range with r(2)=0.9996±0.0003 using double logarithmic calibration (n=5). Within-run precisions (n=6) were 2.0-5.3% and between-run (3 runs; n=18) precisions 2.7-5.8%. Accuracies were between 101 and 105% for the whole calibration range. The drug was sufficiently stable under all relevant analytical conditions. Finally, the assay was successfully applied to determine plasma and tumor drug levels after oral administration of GSK2126458 to mice with AMC711T neuroblastoma xenografts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2015.01.026DOI Listing
March 2015

Liquid chromatography-tandem mass spectrometric assay for the light sensitive survivin suppressant sepantronium bromide (YM155) in mouse plasma.

J Pharm Biomed Anal 2014 Apr 21;92:144-8. Epub 2014 Jan 21.

Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands. Electronic address:

A quantitative bioanalytical liquid chromatography-tandem mass spectrometric (LC-MS/MS) assay for sepantronium bromide (YM155), an inhibitor of survivin, was developed and validated. Under reduced light exposure, plasma samples were pre-treated using protein precipitation with acetonitrile containing AT7519 as internal standard. After dilution with water, the extract was directly injected into the reversed-phase liquid chromatographic system. The eluate was transferred into the electrospray interface with positive ionization and compounds detected in the selected reaction monitoring mode of a triple quadrupole mass spectrometer. The assay was validated in a 0.5-100ng/ml calibration range with r(2)=0.9981±0.0007 using double logarithmic calibration (n=5). Within day precisions (n=6) were 3.6-8.8% and between day (3 days; n=18) precisions 6.5-11.1%. Accuracies were between 92 and 111% for the whole calibration range. The light sensitive drug sepantronium was sufficiently stable under all relevant analytical conditions. Finally, the assay was successfully used to determine plasma drug levels in mice after administration of sepantronium bromide by continuous infusion from subcutaneously implanted osmotic pumps.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2014.01.011DOI Listing
April 2014

Epac-Rap signaling reduces oxidative stress in the tubular epithelium.

J Am Soc Nephrol 2014 Jul 7;25(7):1474-85. Epub 2014 Feb 7.

Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands; OcellO BV, Leiden, The Netherlands.

Activation of Rap1 by exchange protein activated by cAMP (Epac) promotes cell adhesion and actin cytoskeletal polarization. Pharmacologic activation of Epac-Rap signaling by the Epac-selective cAMP analog 8-pCPT-2'-O-Me-cAMP during ischemia-reperfusion (IR) injury reduces renal failure and application of 8-pCPT-2'-O-Me-cAMP promotes renal cell survival during exposure to the nephrotoxicant cisplatin. Here, we found that activation of Epac by 8-pCPT-2'-O-Me-cAMP reduced production of reactive oxygen species during reoxygenation after hypoxia by decreasing mitochondrial superoxide production. Epac activation prevented disruption of tubular morphology during diethyl maleate-induced oxidative stress in an organotypic three-dimensional culture assay. In vivo renal targeting of 8-pCPT-2'-O-Me-cAMP to proximal tubules using a kidney-selective drug carrier approach resulted in prolonged activation of Rap1 compared with nonconjugated 8-pCPT-2'-O-Me-cAMP. Activation of Epac reduced antioxidant signaling during IR injury and prevented tubular epithelial injury, apoptosis, and renal failure. Our data suggest that Epac1 decreases reactive oxygen species production by preventing mitochondrial superoxide formation during IR injury, thus limiting the degree of oxidative stress. These findings indicate a new role for activation of Epac as a therapeutic application in renal injury associated with oxidative stress.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1681/ASN.2013070679DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4073429PMC
July 2014

Newly-derived neuroblastoma cell lines propagated in serum-free media recapitulate the genotype and phenotype of primary neuroblastoma tumours.

Eur J Cancer 2014 Feb 6;50(3):628-37. Epub 2013 Dec 6.

Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Meibergdreef 15, PO Box 22700, 1105 AZ Amsterdam, The Netherlands. Electronic address:

Recently protocols have been devised for the culturing of cell lines from fresh tumours under serum-free conditions in defined neural stem cell medium. These cells, frequently called tumour initiating cells (TICs) closely retained characteristics of the tumours of origin. We report the isolation of eight newly-derived neuroblastoma TICs from six primary neuroblastoma tumours and two bone marrow metastases. The primary tumours from which these TICs were generated have previously been fully typed by whole genome sequencing (WGS). Array comparative genomic hybridisation (aCGH) analysis showed that TIC lines retained essential characteristics of the primary tumours and exhibited typical neuroblastoma chromosomal aberrations such as MYCN amplification, gain of chromosome 17q and deletion of 1p36. Protein analysis showed expression for neuroblastoma markers MYCN, NCAM, CHGA, DBH and TH while haematopoietic markers CD19 and CD11b were absent. We analysed the growth characteristics and confirmed tumour-forming potential using sphere-forming assays, subcutaneous and orthotopic injection of these cells into immune-compromised mice. Affymetrix mRNA expression profiling of TIC line xenografts showed an expression pattern more closely mimicking primary tumours compared to xenografts from classical cell lines. This establishes that these neuroblastoma TICs cultured under serum-free conditions are relevant and useful neuroblastoma tumour models.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejca.2013.11.015DOI Listing
February 2014

Liquid chromatography-tandem mass spectrometric assay for the cyclin-dependent kinase inhibitor AT7519 in mouse plasma.

J Pharm Biomed Anal 2014 Jan 12;88:216-20. Epub 2013 Sep 12.

Amsterdam Medical Center, University of Amsterdam, Department of Oncogenomics, Meibergdreef 15, PO Box 22700, 1105 AZ Amsterdam, The Netherlands.

A quantitative bioanalytical liquid chromatography-tandem mass spectrometric (LC-MS/MS) assay for the cyclin-dependent kinase inhibitor AT7519 in mouse plasma was developed and validated. Plasma samples were pre-treated using protein precipitation with acetonitrile containing rucaparib as internal standard. After dilution with water, the extract was directly injected into the reversed-phase LC system. The eluate was transferred into the electrospray interface with positive ionization and the analyte was detected in the selected reaction monitoring mode of a triple quadrupole mass spectrometer. The assay was validated in a 5-10,000ng/ml calibration range using double logarithmic calibration, 5ng/ml was the lower limit of quantification. Within day precisions (n=6) were 2.9-5.6%, between day (3 days; n=18) precisions 3.2-7.2%. Accuracies were between 95.9 and 99.0% for the whole calibration range. The drug was stable under all relevant analytical conditions. Finally, the assay was successfully used to determine plasma pharmacokinetics after intraperitoneal administration of AT7519 in mice with neuroblastoma xenografts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2013.08.051DOI Listing
January 2014

Targeted inhibition of renal Rho kinase reduces macrophage infiltration and lymphangiogenesis in acute renal allograft rejection.

Eur J Pharmacol 2012 Nov 3;694(1-3):111-9. Epub 2012 Sep 3.

Department of Pathology & Medical Biology, Division of Pathology, University Medical Center Groningen, University of Groningen, The Netherlands.

The Rho kinase pathway plays an important role in epithelial dedifferentiation and inflammatory cell infiltration. Recent studies suggest that inflammation promotes lymphangiogenesis, which has been associated with renal allograft rejection. We investigated whether targeted inhibition of the Rho kinase pathway in proximal tubular cells reduces inflammation and lymphangiogenesis in acute renal allograft rejection. The Rho kinase inhibitor Y27632 was coupled to lysozyme (Y27632-lysozyme), providing a kidney-specific conjugate that can release its drug in proximal tubular cells. Isogenic (Fisher-Fisher, n=18), or allogenic (Fisher-Lewis, n=24) kidney transplantations were performed, with the contralateral kidney remaining in situ. To elicit acute rejection, no immunosuppressive treatment was given. Animals were treated daily with Y27632-lysozyme (10 mg/kg/day i.v.) or vehicle (saline i.v.) until sacrifice (1 or 4 days post-transplantation). After allogenic transplantation, interstitial macrophage accumulation was strongly reduced by Y27632-lysozyme at day 4 after transplantation. Interstitial lymphangiogenesis, which was induced in allografts as compared to control kidney, was also reduced by renal Rho kinase inhibition at day 4 after transplantation. The increase of vimentin and procollagen-1alpha1 gene expression in renal allografts from day 1 to day 4 after transplantation was significantly reduced by Y27632-lysozyme. Y27632-lysozyme did not affect systolic blood pressure in isogenic or allogenic transplantation groups. In cultured tubular epithelial cells (NRK-52E), Rho kinase inhibition dose-dependently reduced IL-1β-induced MCP-1 gene expression. Renal inhibition of Rho kinase causes a marked reduction in renal inflammation and renal lymphangiogenesis during acute transplant rejection, suggesting that this treatment regimen is a valuable future treatment in renal transplantation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2012.08.010DOI Listing
November 2012

Development of a cell-selective and intrinsically active multikinase inhibitor bioconjugate.

Bioconjug Chem 2011 Apr 31;22(4):540-5. Epub 2011 Mar 31.

Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University , Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.

Multikinase inhibitors are potent anticancer drugs that simultaneously intervene in multiple related signaling cascades, thus being capable of blocking salvage pathways that may play a role in the development of drug resistance. Multikinase inhibitors are increasingly evaluated for indications other than cancer, but long-term safety risks dictated by off-organ toxicities of these agents may prevent their safe and effective use. Here, we describe a new approach in which platinum coordination chemistry is applied for the development of a cell-selective multikinase inhibitor bioconjugate. The platinum(II) kinase inhibitor bioconjugate was designed to be active with the linker attached to the inhibitor and displayed improved activity by enhanced cell specificity as well as enhanced intracellular retention, thereby prolonging its pharmacological activity. In addition, the utilized platinum-based linkage technology potentiated the inhibitory activity of the multikinase inhibitor. These features in combination with carrier-mediated uptake in the target cells may revolutionize dosing regimens and safety profiles of (multi)kinase inhibitors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bc1005637DOI Listing
April 2011