Publications by authors named "Emmanuel Breard"

75 Publications

The VP3 Protein of Bluetongue Virus Associates with the MAVS Complex and Interferes with the RIG-I-Signaling Pathway.

Viruses 2021 02 2;13(2). Epub 2021 Feb 2.

UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France.

Bluetongue virus (BTV), an arbovirus transmitted by biting midges, is a major concern of wild and domestic ruminants. While BTV induces type I interferon (alpha/beta interferon [IFN-α/β]) production in infected cells, several reports have described evasion strategies elaborated by this virus to dampen this intrinsic, innate response. In the present study, we suggest that BTV VP3 is a new viral antagonist of the IFN-β synthesis. Indeed, using split luciferase and coprecipitation assays, we report an interaction between VP3 and both the mitochondrial adapter protein MAVS and the IRF3-kinase IKKε. Overall, this study describes a putative role for the BTV structural protein VP3 in the control of the antiviral response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/v13020230DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913109PMC
February 2021

The Genome Segments of Bluetongue Virus Differ in Copy Number in a Host-Specific Manner.

J Virol 2020 12 9;95(1). Epub 2020 Dec 9.

CIRAD, UMR ASTRE, Montpellier, France

Genome segmentation is mainly thought to facilitate reassortment. Here, we show that segmentation can also allow differences in segment abundance in populations of bluetongue virus (BTV). BTV has a genome consisting in 10 segments, and its cycle primarily involves periodic alternation between ruminants and biting midges. We have developed a reverse transcription-quantitative PCR (RT-qPCR) approach to quantify each segment in wild BTV populations sampled in both ruminants and midges during an epizootic. Segment frequencies deviated from equimolarity in all hosts. Interestingly, segment frequencies were reproducible and distinct between ruminants and biting midges. Beyond a putative regulatory role in virus expression, this phenomenon could lead to different evolution rates between segments. The variation in viral gene frequencies remains a largely unexplored aspect of within-host genetics. This phenomenon is often considered to be specific to multipartite viruses. Multipartite viruses have segmented genomes, but in contrast to segmented viruses, their segments are each encapsidated alone in a virion. A main hypothesis explaining the evolution of multipartism is that, compared to segmented viruses, it facilitates the regulation of segment abundancy, and the genes the segments carry, within a host. These differences in gene frequencies could allow for expression regulation. Here, we show that wild populations of a segmented virus, bluetongue virus (BTV), also present unequal segment frequencies. BTV cycles between ruminants and biting midges. As expected from a role in expression regulation, segment frequencies tended to show specific values that differed between ruminants and midges. Our results expand previous knowledge on gene frequency variation and call for studies on its role and conservation beyond multipartite viruses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.01834-20DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7737730PMC
December 2020

"Frozen evolution" of an RNA virus suggests accidental release as a potential cause of arbovirus re-emergence.

PLoS Biol 2020 04 28;18(4):e3000673. Epub 2020 Apr 28.

MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom.

The mechanisms underlying virus emergence are rarely well understood, making the appearance of outbreaks largely unpredictable. Bluetongue virus serotype 8 (BTV-8), an arthropod-borne virus of ruminants, emerged in livestock in northern Europe in 2006, spreading to most European countries by 2009 and causing losses of billions of euros. Although the outbreak was successfully controlled through vaccination by early 2010, puzzlingly, a closely related BTV-8 strain re-emerged in France in 2015, triggering a second outbreak that is still ongoing. The origin of this virus and the mechanisms underlying its re-emergence are unknown. Here, we performed phylogenetic analyses of 164 whole BTV-8 genomes sampled throughout the two outbreaks. We demonstrate consistent clock-like virus evolution during both epizootics but found negligible evolutionary change between them. We estimate that the ancestor of the second outbreak dates from the height of the first outbreak in 2008. This implies that the virus had not been replicating for multiple years prior to its re-emergence in 2015. Given the absence of any known natural mechanism that could explain BTV-8 persistence over this long period without replication, we hypothesise that the second outbreak could have been initiated by accidental exposure of livestock to frozen material contaminated with virus from approximately 2008. Our work highlights new targets for pathogen surveillance programmes in livestock and illustrates the power of genomic epidemiology to identify pathways of infectious disease emergence.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pbio.3000673DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7188197PMC
April 2020

Evaluation of a commercial ELISA for detection of epizootic haemorrhagic disease antibodies in domestic and wild ruminant sera.

Transbound Emerg Dis 2020 Nov 14;67(6):2475-2481. Epub 2020 May 14.

Laboratoire de Santé Animale d'Alfort, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Université Paris Est, Maisons-Alfort, France.

Bluetongue (BT) and epizootic haemorrhagic disease (EHD) are vector-borne viral diseases affecting domestic and wild ruminants. Both are notifiable under OIE rules. BT and EHD viruses (BTV and EHDV) are closely related Orbiviruses with structural, antigenic and molecular similarities. Both viruses can produce analogous clinical signs in susceptible animals. Serological tests are commonly used for BT and EHD diagnosis and surveillance. Competitive ELISA (c-ELISA) is the most widely used serological test for the specific detection of BTV or EHDV viral protein 7 (VP7) antibodies (Abs). The specificity and sensitivity of the BTV c-ELISA kits available on the market are recognized for the detection of BTV Abs. Concerning EHD, a single commercial EHDV c-ELISA kit (ELISA A kit) commonly used for diagnosis in Europe and Africa was available between 2011 and 2018 but is now no longer on the market. In this study, we evaluated a new commercial c-ELISA to detect ruminant EHDV VP7 Abs in 2,199 serum samples from cattle, sheep, goats, wild deer and zoo animals. The results showed that this ELISA kit is specific and can detect the presence of IgG anti-EHDV VP7 with a very good diagnostic specificity and a satisfactory sensitivity in domestic ruminants, zoo animals and wild deer. Therefore, the evaluated c-ELISA can detect the introduction of EHDV into an area where BTV-seropositive domestic animals are present. The performance of this kit is similar to that of the c-ELISA A kit and can thus be used for diagnosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/tbed.13586DOI Listing
November 2020

Experimental infection of calves with seven serotypes of Epizootic Hemorrhagic Disease virus: production and characterization of reference sera.

Vet Ital 2019 Dec 31;55(4):339-346. Epub 2019 Dec 31.

UMR Virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, laboratoire de santé animale d'Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France.

The aim of this study was to produce reference sera against the seven serotypes of Epizootic hemorrhagic disease virus (EHDV‑1, EHDV‑2, EHDV‑4, EHDV‑5, EHDV‑6, EHDV‑7, and EHDV‑8). In a high containment unit, seven Prim 'Holstein calves were inoculated at day 0 (D0) with the selected strains (1 EHDV serotype per calf ). Blood samples (EDTA and whole blood) were periodically taken from D0 until the end of the experiment (D31). Sera were tested with two commercially available EHDV competitive ELISAs (c‑ELISA). Viral genome was detected from EDTA blood samples using in‑house real‑time RT‑PCR. Sera taken on D31 post infection (pi) were tested and characterized by serum neutralization test (SNT) and virus neutralization test (VNT) (for calibration of reference sera). Viral RNA was first detected at D2 pi in five calves. All infected animals were RT‑PCR positive at D7 pi. Seroconversion was observed between D10 and D23 pi depending on the EHDV serotype. SNT and VNT have allowed to determine the neutralizing antibody titers of each serum and the potential cross‑reactions between serotypes. The two c‑ELISA used in this study showed similar results. The calibrated sera are now available for the serological identification of an EHDV isolated on tissue culture or to be used as positive control in seroneutralization assay.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.12834/VetIt.2104.11179.1DOI Listing
December 2019

Clinical cases of Bluetongue serotype 8 in calves in France in the 2018-2019 winter.

Transbound Emerg Dis 2020 May 8;67(3):1401-1405. Epub 2020 Jan 8.

Epidemiology Unit, Laboratory for Animal Health, ANSES, University Paris Est, Maisons-Alfort, France.

Bluetongue virus serotype 8 (BTV-8) caused an epizootic in Europe in 2006/09. Transplacental transmission of BTV-8 was demonstrated leading to abortions, congenital malformations or nervous clinical signs in newborn calves. BTV-8 re-emerged in France in 2015. Although the re-emergent strain is nearly genetically identical to the one that had circulated in 2006/2009, it has caused very few clinical cases. However, from mid-December 2018 to April 2019, cases of calves with congenital malformations or displaying nervous clinical signs occurred in some departments (French administrative unit) in mainland France. Blood samples from these animals were sent to local laboratories, and the positive ones were confirmed at the French Bluetongue reference laboratory (BT-NRL). Out of 580 samples found positive at the local laboratories, 544 were confirmed as RT-PCR BTV-8 positive. The 36 samples found positive in the local laboratories and negative in the BT-NRL were all at the limit of RT-PCR detection. Hundred eighty-eight of the confirmed samples were also tested for the presence of Schmallenberg virus (SBV) and bovine virus diarrhoea virus (BVDV) infection: 4 were found positive for BVDV and none for SBV. The main clinical signs recorded for 244 calves, for which a reporting form was completed by veterinarians, included nervous clinical signs (81%), amaurosis (72%) and decrease/ no suckling reflex (40%). Hydranencephaly and microphthalmia were reported in 19 calves out of 27 in which a necropsy was practiced after death or euthanasia. These results indicate that the re-emergent strain of BTV-8 can cross the transplacental barrier and cause congenital malformations or nervous clinical signs in calves.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/tbed.13466DOI Listing
May 2020

Red deer () Did Not Play the Role of Maintenance Host for Bluetongue Virus in France: The Burden of Proof by Long-Term Wildlife Monitoring and Snapshots.

Viruses 2019 09 27;11(10). Epub 2019 Sep 27.

UMR Virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, laboratoire de santé animale d'Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France, (C.V.).

Bluetongue virus (BTV) is a -borne pathogen infecting both domestic and wild ruminants. In Europe, the Red Deer () (RD) is considered a potential BTV reservoir, but persistent sylvatic cycle has not yet been demonstrated. In this paper, we explored the dynamics of BTV1 and BTV8 serotypes in the RD in France, and the potential role of that species in the re-emergence of BTV8 in livestock by 2015 (i.e., 5 years after the former last domestic cases). We performed 8 years of longitudinal monitoring (2008-2015) among 15 RD populations and 3065 individuals. We compared communities and feeding habits within domestic and wild animal environments (51,380 samples). diversity (>30 species) varied between them, but bridge-species able to feed on both wild and domestic hosts were abundant in both situations. Despite the presence of competent vectors in natural environments, BTV1 and BTV8 strains never spread in RD along the green corridors out of the domestic outbreak range. Decreasing antibody trends with no PCR results two years after the last domestic outbreak suggests that seropositive young RD were not recently infected but carried maternal antibodies. We conclude that RD did not play a role in spreading or maintaining BTV in France.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/v11100903DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832957PMC
September 2019

Bluetongue Virus in France: An Illustration of the European and Mediterranean Context since the 2000s.

Viruses 2019 07 23;11(7). Epub 2019 Jul 23.

UMR Virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, laboratoire de santé animale d'Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France.

Bluetongue (BT) is a non-contagious animal disease transmitted by midges of the genus. The etiological agent is the BT virus (BTV) that induces a variety of clinical signs in wild or domestic ruminants. BT is included in the notifiable diseases list of the World Organization for Animal Health (OIE) due to its health impact on domestic ruminants. A total of 27 BTV serotypes have been described and additional serotypes have recently been identified. Since the 2000s, the distribution of BTV has changed in Europe and in the Mediterranean Basin, with continuous BTV incursions involving various BTV serotypes and strains. These BTV strains, depending on their origin, have emerged and spread through various routes in the Mediterranean Basin and/or in Europe. Consequently, control measures have been put in place in France to eradicate the virus or circumscribe its spread. These measures mainly consist of assessing virus movements and the vaccination of domestic ruminants. Many vaccination campaigns were first carried out in Europe using attenuated vaccines and, in a second period, using exclusively inactivated vaccines. This review focuses on the history of the various BTV strain incursions in France since the 2000s, describing strain characteristics, their origins, and the different routes of spread in Europe and/or in the Mediterranean Basin. The control measures implemented to address this disease are also discussed. Finally, we explain the circumstances leading to the change in the BTV status of France from BTV-free in 2000 to an enzootic status since 2018.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/v11070672DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669443PMC
July 2019

Novel Function of Bluetongue Virus NS3 Protein in Regulation of the MAPK/ERK Signaling Pathway.

J Virol 2019 08 30;93(16). Epub 2019 Jul 30.

UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France

Bluetongue virus (BTV) is an arbovirus transmitted by blood-feeding midges to a wide range of wild and domestic ruminants. In this report, we showed that BTV, through its nonstructural protein NS3 (BTV-NS3), is able to activate the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, as assessed by phosphorylation levels of ERK1/2 and the translation initiation factor eukaryotic translation initiation factor 4E (eIF4E). By combining immunoprecipitation of BTV-NS3 and mass spectrometry analysis from both BTV-infected and NS3-transfected cells, we identified the serine/threonine-protein kinase B-Raf (BRAF), a crucial player in the MAPK/ERK pathway, as a new cellular interactor of BTV-NS3. BRAF silencing led to a significant decrease in the MAPK/ERK activation by BTV, supporting a model wherein BTV-NS3 interacts with BRAF to activate this signaling cascade. This positive regulation acts independently of the role of BTV-NS3 in counteracting the induction of the alpha/beta interferon response. Furthermore, the intrinsic ability of BTV-NS3 to bind BRAF and activate the MAPK/ERK pathway is conserved throughout multiple serotypes/strains but appears to be specific to BTV compared to other members of genus. Inhibition of MAPK/ERK pathway with U0126 reduced viral titers, suggesting that BTV manipulates this pathway for its own replication. Altogether, our data provide molecular mechanisms that unravel a new essential function of NS3 during BTV infection. Bluetongue virus (BTV) is responsible of the arthropod-borne disease bluetongue (BT) transmitted to ruminants by blood-feeding midges. In this report, we found that BTV, through its nonstructural protein NS3 (BTV-NS3), interacts with BRAF, a key component of the MAPK/ERK pathway. In response to growth factors, this pathway promotes cell survival and increases protein translation. We showed that BTV-NS3 enhances the MAPK/ERK pathway, and this activation is BRAF dependent. Treatment of MAPK/ERK pathway with the pharmacologic inhibitor U0126 impairs viral replication, suggesting that BTV manipulates this pathway for its own benefit. Our results illustrate, at the molecular level, how a single virulence factor has evolved to target a cellular function to increase its viral replication.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.00336-19DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6675888PMC
August 2019

Presence of bluetongue and epizootic hemorrhagic disease viruses in Egypt in 2016 and 2017.

Infect Genet Evol 2019 09 30;73:221-226. Epub 2019 Apr 30.

Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Laboratory for Animal Health, Maisons-Alfort, France. Electronic address:

BTV and EHDV are closely-related orbiviruses that are transmitted between domestic and wild ruminants via the bites of hematophagous midges. Previous studies have reported seropositivity against BTV antibodies in sheep and goats in two Egyptian governorates (Beni Suef and Menoufia). However, no recent data are available on the BTV serotype(s) circulating in Egypt and the likely presence of EHDV has never been explored. This study investigated the presence of BTV and EHDV among cattle which had been found BTV-seropositive by ELISA method. These cattle living in proximity to sheep and goats previously found BTV-seropositive. These cattle displayed no clinical signs of BT but reproductive problems had been reported in herds. A total of 227 cattle blood samples were therefore collected in 2016 and 2017. Ninety-four of the 227 animals tested by a BTV ELISA were positive for BTV antibodies (41.4%). Of these 94 ELISA-positive cattle, only 83 EDTA-blood samples were available and therefore tested for BTV and EHDV genome detection by RT-PCR and sequencing. Of the cattle sampled in 2016, results revealed that two were RT-PCR-positive for BTV and seven for EHDV. Sequencing showed the presence of EHDV-1 and BTV-3 genome sequences. EHDV-1 S2 shared 99.5% homology with an EHDV-1 S2 from a strain isolated in 2016 in Israel. BTV-3 S2 and S8 sequences shared >99.8% nucleotide similarity with the BTV-3 Zarzis S2 and S8 sequences (Tunisian BTV, also detected in 2016). Of the 66 blood samples tested following their collection in 2017, they were all EHDV-negative by RT-qPCR while five were BTV- positive by RT-qPCR. However, attempts to identify the BTV serotype of these five samples were unsuccessful. Only part of BTV S8 was sequenced and it showed 79% nucleotide similarity with S8 of atypical BTV serotypes (particularly with BTV-26 and another BTV serotype strain isolated from a sheep pox vaccine). Overall, these findings demonstrate that both BTV and EHDV were circulating in Egypt in 2016 and 2017.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meegid.2019.04.033DOI Listing
September 2019

Bluetongue virus and epizootic hemorrhagic disease virus survey in cattle of the Galapagos Islands.

J Vet Diagn Invest 2019 Mar 19;31(2):271-275. Epub 2019 Jan 19.

Universidad San Francisco de Quito (USFQ), Escuela de Medicina Veterinaria, Quito, Ecuador (Vinueza).

Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) have both been reported in mainland Ecuador, but their occurrence was unknown in the Galapagos Islands, an Ecuadorian province. We aimed to detect BTV or EHDV in cattle from the 3 main cattle-producing Galapagos Islands at a between-herd design prevalence of 20% and a within-herd design prevalence of 15%. Blood samples were collected from 410 cattle in 33 farms and tested for antibodies against BTV and EHDV by competitive ELISAs. All results were negative, suggesting that BTV and EHDV are not present in the Galapagos Islands.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/1040638718824630DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838815PMC
March 2019

Evidence of reduced viremia, pathogenicity and vector competence in a re-emerging European strain of bluetongue virus serotype 8 in sheep.

Transbound Emerg Dis 2019 May 22;66(3):1177-1185. Epub 2019 Feb 22.

The Pirbright Institute, Pirbright, UK.

The outbreak of bluetongue virus (BTV) serotype 8 (BTV-8) during 2006-2009 in Europe was the most costly epidemic of the virus in recorded history. In 2015, a BTV-8 strain re-emerged in France which has continued to circulate since then. To examine anecdotal reports of reduced pathogenicity and transmission efficiency, we investigated the infection kinetics of a 2007 UK BTV-8 strain alongside the re-emerging BTV-8 strain isolated from France in 2017. Two groups of eight BTV-naïve British mule sheep were inoculated with 5.75 log TCID /ml of either BTV-8 strain. BTV RNA was detected by 2 dpi in both groups with peak viraemia occurring between 5-9 dpi. A significantly greater amount of BTV RNA was detected in sheep infected with the 2007 strain (6.0-8.8 log genome copies/ml) than the re-emerging BTV-8 strain (2.9-7.9 log genome copies/ml). All infected sheep developed BTV-specific antibodies by 9 dpi. BTV was isolated from 2 dpi to 12 dpi for 2007 BTV-8-inoculated sheep and from 5 to 10 dpi for sheep inoculated with the remerging BTV-8. In Culicoides sonorensis feeding on the sheep over the period 7-12 dpi, vector competence was significantly higher for the 2007 strain than the re-emerging strain. Both the proportion of animals showing moderate (as opposed to mild or no) clinical disease (6/8 vs. 1/8) and the overall clinical scores (median 5.25 vs. 3) were significantly higher in sheep infected with the 2007 strain, compared to those infected with the re-emerging strain. However, one sheep infected with the re-emerging strain was euthanized at 16 dpi having developed severe lameness. This highlights the potential of the re-emerging BTV-8 to still cause illness in naïve ruminants with concurrent costs to the livestock industry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/tbed.13131DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563110PMC
May 2019

Evaluation of an IGM-specific ELISA for early detection of bluetongue virus infections in domestic ruminants sera.

Transbound Emerg Dis 2019 Jan 23;66(1):537-545. Epub 2018 Nov 23.

Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France.

Competitive-ELISA (c-ELISA) is the most widely used serological test for the detection of Bluetongue virus (BTV) viral protein 7 (VP7) antibodies (Ab). However, these BTV c-ELISAs cannot to distinguish between IgG and IgM. IgM Ab are generated shortly after the primary immune response against an infectious agent, indicating a recent infection or exposure to antigens, such as after vaccination. Because the BTV genome or anti-VP7 Ab can be detected in ruminant blood months after infection, BTV diagnostic tools cannot discriminate between recent and old infections. In this study, we evaluated an IgM-capture ELISA prototype to detect ruminant anti-BTV VP7 IgM on 1,650 serum samples from cattle, sheep, or goats. Animals were BTV-naive, infected, or/and vaccinated with BTV-1, -2, -4, -8, -9, -16, or -27, and we also included 30 sera from cattle infected with the Epizootic haemorrhagic disease virus (EHDV) serotype 6. Results demonstrated that this ELISA kit is specific and can detect the presence of IgM with satisfactory diagnostic specificity and sensitivity from 1 to 5 weeks after BTV infection in domestic ruminants (for goats and cattle; for sheep, at least up to 24 days). The peak of anti-VP7 IgM was reached when the level of infectious viruses and BTV RNA in blood were the highest. The possibility of detecting BTV-RNA in IgM-positive sera allows the amplification and sequencing of the partial RNA segment 2 (encoding the serotype specific to VP2) to determine the causative BTV serotype/strain. Therefore, BTV IgM ELISA can detect the introduction of BTV (or EHDV) in an area with BTV-seropositive domestic animals regardless of their serological BTV status. This approach may also be of particular interest for retrospective epidemiological studies on frozen serum samples.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/tbed.13060DOI Listing
January 2019

Emergence of bluetongue virus serotype 4 in mainland France in November 2017.

Transbound Emerg Dis 2018 Oct 8;65(5):1158-1162. Epub 2018 Jun 8.

UMR 1161 ANSES/INRA/ENVA, Université Paris-Est ANSES Maisons-Alfort, Maisons-Alfort, France.

In November 2017, a 15-day-old calf located in France (Haute-Savoie department) was found positive for bluetongue virus (BTV) RNA by RT-PCR. Laboratory investigations allowed the isolation and identification of the serotype: BTV-4. The analysis of the full viral genome showed that all the 10 genome segments were closely related to BTV-4 strains involved in a large BT outbreak in the Balkan Peninsula, in Italy since 2014 and in Corsica since the end of October 2016. These results together with epidemiological data suggest that BTV-4 has been introduced to mainland France from Corsica or Italy where BTV-4 outbreaks have been reported in summer and autumn 2016. This is the first report of the introduction of BTV-4 in mainland France.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/tbed.12919DOI Listing
October 2018

Epizootic haemorrhagic disease virus circulation in Tunisia.

Vet Ital 2018 Mar;54(1):87-90

RVT, 20 rue de JebelLakdhar, 1006 Tunis-La Rabta, under the tutelage of Tunis - El Manar University, Tunisia.

Epizootic haemorrhagic disease virus (EHDV) was detected for the first time in Tunisia and in other Northern African countries in 2006. The objective of the present study was to investigate whether EHDV circulated in Tunisian livestock before and after the officially-reported outbreak of 2006. Thus, serum samples from cattle and dromedaries collected in different time periods (before and after 2006) and from different regions of Tunisia were screened for the presence of EHDV antibodies. Serological investigations conducted on cattle and dromedary sera collected in 2000 and 2001 demonstrated no virus circulation on these dates. However, viral circulation was evidenced in 2012 and 2013, although no EHDV cases were officially reported in these years. Serum-neutralization assessed on few ELISA positive samples, confirmed the presence of antibodies against EHDV serotype 6, which was the serotype involved in the EHDV outbreak in the Maghreb region in 2006.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.12834/VetIt.973.5129.2DOI Listing
March 2018

Fetopathic effects of experimental Schmallenberg virus infection in pregnant goats.

Vet Microbiol 2017 Nov 14;211:141-149. Epub 2017 Oct 14.

Université Paris-Est, ANSES, Laboratoire de Santé Animale, UMR 1161 Virologie ANSES-INRA-ENVA, 14 rue Pierre et Marie Curie, 94704 Maisons-Alfort, France.

Schmallenberg virus (SBV) is an emerging virus responsible for congenital malformations in the offspring of domestic ruminants. It is speculated that infection of pregnant dams may also lead to a significant number of unrecognized fetal losses during the early period of gestation. To assess the pathogenic effects of SBV infection of goats in early pregnancy, we inoculated dams at day 28 or 42 of gestation and followed the animals until day 55 of gestation. Viremia in the absence of clinical signs was detected in all virus-inoculated goats. Fetal deaths were observed in several goats infected at day 28 or 42 of gestation and were invariably associated with the presence of viral genomic RNA in the affected fetuses. Among the viable fetuses, two displayed lesions in the central nervous system (porencephaly) in the presence of viral genome and antigen. All fetuses from goats infected at day 42 and the majority of fetuses from goats infected at day 28 of gestation contained viral genomic RNA. Viral genome was widely distributed in these fetuses and their respective placentas, and infectious virus could be isolated from several organs and placentomes of the viable fetuses. Our results show that fetuses of pregnant goats are susceptible to vertical SBV infection during early pregnancy spanning at least the period between day 28 and 42 of gestation. The outcomes of experimental SBV infection assessed at day 55 of gestation include fetal mortalities, viable fetuses displaying lesions of the central nervous system, as well as viable fetuses without any detectable lesion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2017.10.011DOI Listing
November 2017

Bluetongue Virus: From BTV-1 to BTV-27.

Adv Virus Res 2017 22;99:161-197. Epub 2017 Sep 22.

UMR1161 Virologie, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France.

Bluetongue virus (BTV) is the type species of genus Orbivirus within family Reoviridae. Bluetongue virus is transmitted between its ruminant hosts by the bite of Culicoides spp. midges. Severe BT cases are characterized by symptoms including hemorrhagic fever, particularly in sheep, loss of productivity, and death. To date, 27 BTV serotypes have been documented. These include novel isolates of atypical BTV, which have been almost fully characterized using deep sequencing technologies and do not rely on Culicoides vectors for their transmission among hosts. Due to its high economic impact, BT is an Office International des Epizooties (OIE) listed disease that is strictly controlled in international commercial exchanges. During the 20th century, BTV has been endemic in subtropical regions. In the last 15 years, novel strains of nine "typical" BTV serotypes (1, 2, 4, 6, 8, 9, 11, 14, and 16) invaded Europe, some of which caused disease in naive sheep and unexpectedly in bovine herds (particularly serotype 8). Over the past few years, three novel "atypical" serotypes (25-27) were characterized during sequencing studies of animal samples from Switzerland, Kuwait, and France, respectively. Classical serotype-specific inactivated vaccines, although expensive, were very successful in controlling outbreaks as shown with the northern European BTV-8 outbreak which started in the summer of 2006. Technological jumps in deep sequencing methodologies made rapid full characterizations of BTV genome from isolates/tissues feasible. Next-generation sequencing (NGS) approaches are powerful tools to study the variability of BTV genomes on a fine scale. This paper provides information on how NGS impacted our knowledge of the BTV genome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.aivir.2017.08.003DOI Listing
May 2018

Ring trial 2016 for Bluetongue virus detection by real-time RT-PCR in France.

Vet Med Sci 2017 May 16;3(2):107-114. Epub 2017 Apr 16.

ANSES/INRA/ENVA-UPECUMR 1161 Virologie14 rue Pierre et Marie CURIE-94700Maisons AlfortFrance.

Since the unexpected emergence of BTV-8 in Northern Europe and the incursion of BTV-8 and 1 in France in 2006-2007, molecular diagnosis has considerably evolved. Several real-time RT-PCR (rtRT-PCR) methods have been developed and published, and are currently being used in many countries across Europe for BTV detection and typing. In France, the national reference laboratory (NRL) for orbiviruses develops and validates 'ready-to-use' kits with private companies for viral RNA detection. The regional laboratories network that was set up to deal with a heavy demand for analyses has used these available kits. From 2007, ring tests were organized to monitor the performance of the French laboratories. This study presents the results of 63 regional laboratories in the ring trial organized in 2016. Blood samples were sent to the laboratories. Participants were asked to use the rtRT-PCR methods in place in their laboratory, for detection of all BTV serotypes and specifically BTV-8. The French regional laboratories are able to detect and genotype BTV in affected animals. Despite the use of several methods (i.e. RNA extraction and different commercial rtRT-PCRs), the network is homogeneous. The ring trial demonstrated that the French regional veterinary laboratories have reliable and robust BTV diagnostic tools for BTV genome detection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/vms3.63DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5488199PMC
May 2017

Replication-Deficient Particles: New Insights into the Next Generation of Bluetongue Virus Vaccines.

J Virol 2017 Jan 16;91(1). Epub 2016 Dec 16.

Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom

Bluetongue virus (BTV) is endemic in many parts of the world, often causing severe hemorrhagic disease in livestock. To date, at least 27 different serotypes have been recognized. Vaccination against all serotypes is necessary to protect susceptible animals and to prevent onward spread of the virus by insect vectors. In our previous studies, we generated replication-deficient (disabled infectious single-cycle [DISC]) virus strains for a number of serotypes and reported preliminary data on their protective efficacy in animals. In this report, to advance the DISC vaccines to the marketplace, we investigated different parameters of these DISC vaccines. First, we demonstrated the genetic stabilities of these vaccine strains and also the complementing cell line. Subsequently, the optimal storage conditions of vaccines, including additives, temperature, and desiccation, were determined and their protective efficacies in animals confirmed. Furthermore, to test if mixtures of different vaccine strains could be tolerated, we tested cocktails of DISC vaccines in combinations of three or six different serotypes in sheep and cattle, the two natural hosts of BTV. Groups of sheep vaccinated with a cocktail of six different vaccines were completely protected from challenge with individual virulent serotypes, both in early challenge and after 5 months of challenge without any clinical disease. There was no interference in protection between the different vaccines. Protection was also achieved in cattle with a mixture of three vaccine strains, albeit at a lesser level than in sheep. Our data support and validate the suitability of these virus strains as the next-generation vaccines for BTV.

Importance: Bluetongue (BT) is a debilitating and in many cases lethal disease that affects ruminants of economic importance. Classical vaccines that afford protection against bluetongue virus, the etiological agent, are not free from secondary and undesirable effects. A surge in new approaches to produce highly attenuated, safer vaccines was evident after the development of the BTV reverse-genetics system that allows the introduction of targeted mutations in the virus genome. We targeted an essential gene to develop disabled virus strains as vaccine candidates. The results presented in this report further substantiate our previous evidence and support the suitability of these virus strains as the next-generation BTV vaccines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.01892-16DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5165199PMC
January 2017

Nonstructural Protein NSs of Schmallenberg Virus Is Targeted to the Nucleolus and Induces Nucleolar Disorganization.

J Virol 2017 Jan 16;91(1). Epub 2016 Dec 16.

ANSES, UMR1161 Virologie, Laboratory for Animal Health, Maisons-Alfort, France

Schmallenberg virus (SBV) was discovered in Germany in late 2011 and then spread rapidly to many European countries. SBV is an orthobunyavirus that causes abortion and congenital abnormalities in ruminants. A virus-encoded nonstructural protein, termed NSs, is a major virulence factor of SBV, and it is known to promote the degradation of Rpb1, a subunit of the RNA polymerase II (Pol II) complex, and therefore hampers global cellular transcription. In this study, we found that NSs is mainly localized in the nucleus of infected cells and specifically appears to target the nucleolus through a nucleolar localization signal (NoLS) localized between residues 33 and 51 of the protein. NSs colocalizes with nucleolar markers such as B23 (nucleophosmin) and fibrillarin. We observed that in SBV-infected cells, B23 undergoes a nucleolus-to-nucleoplasm redistribution, evocative of virus-induced nucleolar disruption. In contrast, the nucleolar pattern of B23 was unchanged upon infection with an SBV recombinant mutant with NSs lacking the NoLS motif (SBVΔNoLS). Interestingly, unlike wild-type SBV, the inhibitory activity of SBVΔNoLS toward RNA Pol II transcription is impaired. Overall, our results suggest that a putative link exists between NSs-induced nucleolar disruption and its inhibitory function on cellular transcription, which consequently precludes the cellular antiviral response and/or induces cell death.

Importance: Schmallenberg virus (SBV) is an emerging arbovirus of ruminants that spread in Europe between 2011 and 2013. SBV induces fetal abnormalities during gestation, with the central nervous system being one of the most affected organs. The virus-encoded NSs protein acts as a virulence factor by impairing host cell transcription. Here, we show that NSs contains a nucleolar localization signal (NoLS) and induces disorganization of the nucleolus. The NoLS motif in the SBV NSs is absolutely necessary for virus-induced inhibition of cellular transcription. To our knowledge, this is the first report of nucleolar functions for NSs within the Bunyaviridae family.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.01263-16DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5165206PMC
January 2017

Bluetongue virus serotype 27: detection and characterization of two novel variants in Corsica, France.

J Gen Virol 2016 09 19;97(9):2073-2083. Epub 2016 Jul 19.

Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Laboratoire de Santé Animale d'Alfort, Maisons-Alfort, France.

During the compulsory vaccination programme against bluetongue virus serotype 1 (BTV-1) in Corsica (France) in 2014, a BTV strain belonging to a previously uncharacterized serotype (BTV-27) was isolated from asymptomatic goats. The present study describes the detection and molecular characterization of two additional distinct BTV-27 variants found in goats in Corsica in 2014 and 2015. The full coding genome of these two novel BTV-27 variants show high homology (90-93 % nucleotide/93-95 % amino acid) with the originally described BTV-27 isolate from Corsican goats in 2014. These three variants constitute the novel serotype BTV-27 ('BTV-27/FRA2014/v01 to v03'). Phylogenetic analyses with the 26 other established BTV serotypes revealed the closest relationship to BTV-25 (SWI2008/01) (80 % nucleotide/86 % amino acid) and to BTV-26 (KUW2010/02) (73-74 % nucleotide/80-81 % amino acid). However, highest sequence homologies between individual segments of BTV-27/FRA2014/v01-v03 with BTV-25 and BTV-26 vary. All three variants share the same segment 2 nucleotype with BTV-25. Neutralization assays of anti-BTV27/FRA2014/v01-v03 sera with a reassortant virus containing the outer capsid proteins of BTV-25 (BTV1VP2/VP5 BTV25) further confirmed that BTV-27 represents a distinct BTV serotype. Relationships between the variants and with BTV-25 and BTV-26, hypotheses about their origin, reassortment events and evolution are discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1099/jgv.0.000557DOI Listing
September 2016

Molecular characterisation of epizootic haemorrhagic disease virus associated with a Tunisian outbreak among cattle in 2006.

Acta Vet Hung 2016 Jun;64(2):250-62

Anses, INRA, ENVA, UPEC, UMR 1161 Virology , 23 avenue du général du Gaulle, 94706 Maisons-Alfort , France.

In 2006, epizootic haemorrhagic disease (EHD) outbreaks were recorded in the Maghreb (Tunisia, Morocco and Algeria) among cattle, resulting in severe repercussions on herds (oedema of the head, necrotic lesions of the oral mucosa, hyperthermia of the teats, accompanied by anorexia and respiratory distress) and economic losses. The present study gives new information on the molecular characterisation of the EHD virus (EHDV) that had circulated in Tunisia. Genome segments 2, 3, 6, 7 and 10 of EHDV, corresponding to the VP2, VP3, VP5, VP7 and NS3/NS3A proteins, respectively, were amplified from the blood of one animal by RT-PCR and sequenced. Nucleotide sequence comparisons of these five segments with sequences available in the GenBank demonstrated that an EHDV serotype 6 (EHDV-6) had been present in Tunisia in 2006. The possible origin of this strain is discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1556/004.2016.025DOI Listing
June 2016

Complete Genome Sequence of Bluetongue Virus Serotype 8, Which Reemerged in France in August 2015.

Genome Announc 2016 Apr 14;4(2). Epub 2016 Apr 14.

Anses, Laboratory of Ploufragan, Unit of Viral Genetics and Biosafety, Ploufragan, France.

We announce here the complete genome sequence (coding and noncoding) of the bluetongue virus (BTV) serotype 8, isolated from a ram in Allier department, France, 2015. Sequence analysis confirms the reemergence of the BTV-8 strain that previously circulated in France until 2009 and other European countries until 2010.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/genomeA.00163-16DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4832148PMC
April 2016

Inter-laboratory evaluation of the performance parameters of a Lateral Flow Test device for the detection of Bluetongue virus-specific antibodies.

J Virol Methods 2016 Feb 11;228:140-50. Epub 2015 Dec 11.

Veterinary and Agrochemical Research Centre (CODA-CERVA), Coordination of the Veterinary Diagnostic, Epidemiology and Risk Analysis Unit (CDV-ERA), Groeselenberg 99, 1180 Brussels, Belgium; Ghent University, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Salisburylaan 133, 9820 Merelbeke, Belgium.

Bluetongue (BT) is a viral vector-borne disease affecting domestic and wild ruminants worldwide. In this study, a commercial rapid immuno-chromatographic method or Lateral Flow Test (LFT) device, for the detection of BT virus-specific antibodies in animal serum, was evaluated in an international inter-laboratory proficiency test. The evaluation was done with sera samples of variable background (ruminant species, serotype, field samples, experimental infections, vaccinated animals). The diagnostic sensitivity was 100% (95% C.I. [90.5-100]) and the diagnostic specificity was 95.2% (95% C.I. [76.2-99.9]). The repeatability (accordance) and reproducibility (concordance) were 100% for seropositive samples but were lower for two of the seronegative samples (45% and 89% respectively). The analytical sensitivity, evaluated by testing positive sera at increasing dilutions was better for the BT LFT compared to some commercial ELISAs. Seroconversion of an infected sheep was detected at 4 days post infection. Analytical specificity was impaired by cross-reactions observed with some of the samples seropositive for Epizootic Haemorrhagic Disease Virus (EHDV). The agreement (Cohen's kappa) between the LFT and a commercial BT competitive ELISA was 0.79 (95% CI [0.62-0.95]). Based on these results, it can be concluded that the BT LFT device is a rapid and sensitive first-line serological test that can be used in the field, especially in areas endemic for the disease where there is a lack of diagnostic facilities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jviromet.2015.12.001DOI Listing
February 2016

Widespread Reassortment Shapes the Evolution and Epidemiology of Bluetongue Virus following European Invasion.

PLoS Pathog 2015 Aug 7;11(8):e1005056. Epub 2015 Aug 7.

Vector-Borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Woking, United Kingdom.

Genetic exchange by a process of genome-segment 'reassortment' represents an important mechanism for evolutionary change in all viruses with segmented genomes, yet in many cases a detailed understanding of its frequency and biological consequences is lacking. We provide a comprehensive assessment of reassortment in bluetongue virus (BTV), a globally important insect-borne pathogen of livestock, during recent outbreaks in Europe. Full-genome sequences were generated and analysed for over 150 isolates belonging to the different BTV serotypes that have emerged in the region over the last 5 decades. Based on this novel dataset we confirm that reassortment is a frequent process that plays an important and on-going role in evolution of the virus. We found evidence for reassortment in all ten segments without a significant bias towards any particular segment. However, we observed biases in the relative frequency at which particular segments were associated with each other during reassortment. This points to selective constraints possibly caused by functional relationships between individual proteins or genome segments and genome-wide epistatic interactions. Sites under positive selection were more likely to undergo amino acid changes in newly reassorted viruses, providing additional evidence for adaptive dynamics as a consequence of reassortment. We show that the live attenuated vaccines recently used in Europe have repeatedly reassorted with field strains, contributing to their genotypic, and potentially phenotypic, variability. The high degree of plasticity seen in the BTV genome in terms of segment origin suggests that current classification schemes that are based primarily on serotype, which is determined by only a single genome segment, are inadequate. Our work highlights the need for a better understanding of the mechanisms and epidemiological consequences of reassortment in BTV, as well as other segmented RNA viruses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1005056DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529188PMC
August 2015

Turnover Rate of NS3 Proteins Modulates Bluetongue Virus Replication Kinetics in a Host-Specific Manner.

J Virol 2015 Oct 5;89(20):10467-81. Epub 2015 Aug 5.

UMR754, Université Claude Bernard Lyon 1, Institut National de la Recherche Agronomique, Ecole Pratique des Hautes Etudes, SFR BioSciences Gerland, Lyon, France

Unlabelled: Bluetongue virus (BTV) is an arbovirus transmitted to livestock by midges of the Culicoides family and is the etiological agent of a hemorrhagic disease in sheep and other ruminants. In mammalian cells, BTV particles are released primarily by virus-induced cell lysis, while in insect cells they bud from the plasma membrane and establish a persistent infection. BTV possesses a ten-segmented double-stranded RNA genome, and NS3 proteins are encoded by segment 10 (Seg-10). The viral nonstructural protein 3 (NS3) plays a key role in mediating BTV egress as well as in impeding the in vitro synthesis of type I interferon in mammalian cells. In this study, we asked whether genetically distant NS3 proteins can alter BTV-host interactions. Using a reverse genetics approach, we showed that, depending on the NS3 considered, BTV replication kinetics varied in mammals but not in insects. In particular, one of the NS3 proteins analyzed harbored a proline at position 24 that leads to its rapid intracellular decay in ovine but not in Culicoides cells and to the attenuation of BTV virulence in a mouse model of disease. Overall, our data reveal that the genetic variability of Seg-10/NS3 differentially modulates BTV replication kinetics in a host-specific manner and highlight the role of the host-specific variation in NS3 protein turnover rate.

Importance: BTV is the causative agent of a severe disease transmitted between ruminants by biting midges of Culicoides species. NS3, encoded by Seg-10 of the BTV genome, fulfills key roles in BTV infection. As Seg-10 sequences from various BTV strains display genetic variability, we assessed the impact of different Seg-10 and NS3 proteins on BTV infection and host interactions. In this study, we revealed that various Seg-10/NS3 proteins alter BTV replication kinetics in mammals but not in insects. Notably, we found that NS3 protein turnover may vary in ovine but not in Culicoides cells due to a single amino acid residue that, most likely, leads to rapid and host-dependent protein degradation. Overall, this study highlights that genetically distant BTV Seg-10/NS3 influence BTV biological properties in a host-specific manner and increases our understanding of how NS3 proteins contribute to the outcome of BTV infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.01541-15DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4580187PMC
October 2015

Duplex Real-Time RT-PCR Assays for the Detection and Typing of Epizootic Haemorrhagic Disease Virus.

PLoS One 2015 10;10(7):e0132540. Epub 2015 Jul 10.

ANSES/INRA/ENVA-UPEC, UMR 1161 Virologie, 23 avenue du général de Gaulle-94700 Maisons Alfort-France.

Epizootic haemorrhagic disease virus (EHDV) may cause severe clinical episodes in some species of deer and sometimes in cattle. Laboratory diagnosis provides a basis for the design and timely implementation of disease control measures. There are seven distinct EHDV serotypes, VP2 coding segment 2 being the target for serotype specificity. This paper reports the development and validation of eight duplex real-time RT-PCR assays to simultaneously amplify the EHDV target (S9 for the pan-EHDV real-time RT-PCR assay and S2 for the serotyping assays) and endogenous control gene Beta-actin. Analytical and diagnostic sensitivity and specificity, inter- and intra-assay variation and efficiency were evaluated for each assay. All were shown to be highly specific and sensitive.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132540PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498883PMC
April 2016

Benefits of PCR and decentralization of diagnosis in regional laboratories in the management of Bluetongue in France.

Vet Ital 2015 Oct-Dec;51(4):393-9

UPE, ANSES, INRA, ENVA, UMR 1161 ANSES/INRA/ENVA, Laboratoire de santé animale d'Alfort, 14 rue Pierre et Marie Curie, Maisons-Alfort, France.

Since 1998, Bluetongue virus (BTV) serotypes 1, 2, 4, 6, 8, 9, 11 and 16 have spread throughout Europe. In 2006, BTV serotype 8 (BTV‑8) emerged unexpectedly in Northern Europe, in countries such as Belgium, France, Germany, Luxembourg, and the Netherlands, to spread rapidly in the following year throughout the rest of Europe. In 2007, BTV‑1 spread in Southern Europe, in Spain and in South of France. In 2008, 2 more BTV serotypes were detected in Northern Europe: BTV‑6 in the Netherlands and in Germany, and BTV‑11 in Belgium. The European incursion of BTV has caused considerable economic losses, including direct losses from mortality and reduced production, as well as indirect losses generated by ensuing bans on trade of ruminants between infected and non-infected areas. Given the significance of the disease, all affected countries have established control and eradication measures that have evolved together with the availability of detection and prevention tools such as Polymerase Chain Reaction (PCR) tests and vaccines, respectively. This paper describes how the French National Reference Laboratory for BT has managed diagnosis during the fast and massive spread of BTV‑1 and 8 in 2007 and 2008.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.12834/VetIt.512.3148.2DOI Listing
December 2016

Complete coding genome sequence of putative novel bluetongue virus serotype 27.

Genome Announc 2015 Mar 12;3(2). Epub 2015 Mar 12.

ANSES Alfort, UMR 1161 ANSES/INRA/ENVA, Maisons-Alfort, France.

We announce the complete coding genome sequence of a novel bluetongue virus (BTV) serotype (BTV-n = putative BTV-27) detected in goats in Corsica, France, in 2014. Sequence analysis confirmed the closest relationship between sequences of the novel BTV serotype and BTV-25 and BTV-26, recently discovered in Switzerland and Kuwait, respectively.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/genomeA.00016-15DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357740PMC
March 2015