Publications by authors named "Emma Markham"

4 Publications

  • Page 1 of 1

Laminin 332 expression and prognosis in breast cancer.

Hum Pathol 2018 12 17;82:289-296. Epub 2018 Aug 17.

Department of Epidemiology, University of California, Irvine, CA 92697-7550, USA.

The purpose of this study was to determine the distribution of and potential significance of laminin 332 (LM332) in breast cancer. Specimens from a population-based cohort (N = 297) from 1994 to 1995 were stained for estrogen receptor (ER), progesterone receptor (PgR), HER2 and the LM332 β3 chain. Seventy-five tumors were LM332-positive and 222 were negative. LM332 β3 stained 16.0% of ER and/or PgR-positive tumors and 73.2% of triple-negative breast cancers (TNBC). Immunoblotting revealed LM332 in TNBC and HER2-positive samples, but not in an ER-positive breast carcinoma or a phyllodes tumor. After 20 years, 172 patients were alive, 43 had died of breast cancer and 82 of other causes. Patients with LM332-positive tumors had significantly worse 5 (P < .0001) and 10-year (P < .05) overall and breast cancer specific survival. Among patients with LM332 β3-expressing and ER/PgR-negative carcinomas, 10-year survival was significantly reduced (P < .0450). In a multivariate analysis LM332-positive patients had significant hazard ratios of 3.9 with 95% confidence intervals (CI) of 2.0-7.7 and 2.2 with 95% CI of 1.3-3.8 for 5 and 10-year overall survival, respectively. Because tumor cell motility is required for metastasis, the effect of LM332 on MDA-MB-231 migration was determined using siRNA. Knockdown of LM332-specific β3 and γ2 chains reduced motility without affecting viability. Our observation that LM332 in breast carcinoma is associated with decreased survival provides evidence that LM332 may have a role in the aggressive phenotype of some breast cancers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.humpath.2018.08.003DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289632PMC
December 2018

Whole-genome characterization of chemoresistant ovarian cancer.

Nature 2015 May;521(7553):489-94

Victorian Institute of Forensic Medicine, Southbank, Victoria 3006, Australia.

Patients with high-grade serous ovarian cancer (HGSC) have experienced little improvement in overall survival, and standard treatment has not advanced beyond platinum-based combination chemotherapy, during the past 30 years. To understand the drivers of clinical phenotypes better, here we use whole-genome sequencing of tumour and germline DNA samples from 92 patients with primary refractory, resistant, sensitive and matched acquired resistant disease. We show that gene breakage commonly inactivates the tumour suppressors RB1, NF1, RAD51B and PTEN in HGSC, and contributes to acquired chemotherapy resistance. CCNE1 amplification was common in primary resistant and refractory disease. We observed several molecular events associated with acquired resistance, including multiple independent reversions of germline BRCA1 or BRCA2 mutations in individual patients, loss of BRCA1 promoter methylation, an alteration in molecular subtype, and recurrent promoter fusion associated with overexpression of the drug efflux pump MDR1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature14410DOI Listing
May 2015

Whole genomes redefine the mutational landscape of pancreatic cancer.

Nature 2015 Feb;518(7540):495-501

Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.

Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature14169DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523082PMC
February 2015
-->