Publications by authors named "Emily Teichman"

4 Publications

  • Page 1 of 1

Harnessing the E3 Ligase KEAP1 for Targeted Protein Degradation.

J Am Chem Soc 2021 Sep 14;143(37):15073-15083. Epub 2021 Sep 14.

Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States.

Proteolysis targeting chimeras (PROTACs) represent a new class of promising therapeutic modalities. PROTACs hijack E3 ligases and the ubiquitin-proteasome system (UPS), leading to selective degradation of the target proteins. However, only a very limited number of E3 ligases have been leveraged to generate effective PROTACs. Herein, we report that the KEAP1 E3 ligase can be harnessed for targeted protein degradation utilizing a highly selective, noncovalent small-molecule KEAP1 binder. We generated a proof-of-concept PROTAC, MS83, by linking the KEAP1 ligand to a BRD4/3/2 binder. MS83 effectively reduces protein levels of BRD4 and BRD3, but not BRD2, in cells in a concentration-, time-, KEAP1- and UPS-dependent manner. Interestingly, MS83 degrades BRD4/3 more durably than the CRBN-recruiting PROTAC dBET1 in MDA-MB-468 cells and selectively degrades BRD4 short isoform over long isoform in MDA-MB-231 cells. It also displays improved antiproliferative activity than dBET1. Overall, our study expands the limited toolbox for targeted protein degradation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.1c04841DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8480205PMC
September 2021

When Rhythms Meet the Blues: Circadian Interactions with the Microbiota-Gut-Brain Axis.

Cell Metab 2020 03;31(3):448-471

APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland. Electronic address:

The microbiota-gut-brain axis encompasses a bidirectional mode of communication between the microorganisms residing in our gut, and our brain function and behavior. The composition of the gut microbiota is subject to diurnal variation and is entrained by host circadian rhythms. In turn, a diverse microbiota is essential for optimal regulation of host circadian pathways. Disruption of the cyclical nature of this microbe-host interaction profoundly influences disease pathology and severity. This review aims to summarize current knowledge on this bidirectional relationship. Indeed, the past few years have revealed promising data regarding the relationship between the microbiota-gut-brain axis and circadian rhythms and how they act in concert to influence disease, but further research needs to be done to examine how they coalesce to modulate severity of, and risk for, certain diseases. Moreover, there is a need for a greater understanding of the molecular mechanisms underlying the close relationship between circadian-microbiome-brain interactions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmet.2020.02.008DOI Listing
March 2020

Ketamine rapidly reverses stress-induced impairments in GABAergic transmission in the prefrontal cortex in male rodents.

Neurobiol Dis 2020 02 7;134:104669. Epub 2019 Nov 7.

Departments of Psychiatry and Neurobiology, Yale University School of Medicine, 34 Park Street, New Haven, CT 06520, United States of America. Electronic address:

Dysfunction of medial prefrontal cortex (mPFC) in association with imbalance of inhibitory and excitatory neurotransmission has been implicated in depression. However, the precise cellular mechanisms underlying this imbalance, particularly for GABAergic transmission in the mPFC, and the link with the rapid acting antidepressant ketamine remains poorly understood. Here we determined the influence of chronic unpredictable stress (CUS), an ethologically validated model of depression, on synaptic markers of GABA neurotransmission, and the influence of a single dose of ketamine on CUS-induced synaptic deficits in mPFC of male rodents. The results demonstrate that CUS decreases GABAergic proteins and the frequency of inhibitory post synaptic currents (IPSCs) of layer V mPFC pyramidal neurons, concomitant with depression-like behaviors. In contrast, a single dose of ketamine can reverse CUS-induced deficits of GABA markers, in conjunction with reversal of CUS-induced depressive-like behaviors. These findings provide further evidence of impairments of GABAergic synapses as key determinants of depressive behavior and highlight ketamine-induced synaptic responses that restore GABA inhibitory, as well as glutamate neurotransmission.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2019.104669DOI Listing
February 2020

The Microbiota-Gut-Brain Axis.

Physiol Rev 2019 10;99(4):1877-2013

APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland.

The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson's disease, and Alzheimer's disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/physrev.00018.2018DOI Listing
October 2019
-->