Publications by authors named "Emily A Bulger"

4 Publications

  • Page 1 of 1

Axial elongation of caudalized human organoids mimics aspects of neural tube development.

Development 2021 06 18;148(12). Epub 2021 Jun 18.

Gladstone Institutes, San Francisco, CA 94158, USA.

Axial elongation of the neural tube is crucial during mammalian embryogenesis for anterior-posterior body axis establishment and subsequent spinal cord development, but these processes cannot be interrogated directly in humans as they occur post-implantation. Here, we report an organoid model of neural tube extension derived from human pluripotent stem cell (hPSC) aggregates that have been caudalized with Wnt agonism, enabling them to recapitulate aspects of the morphological and temporal gene expression patterns of neural tube development. Elongating organoids consist largely of neuroepithelial compartments and contain TBXT+SOX2+ neuro-mesodermal progenitors in addition to PAX6+NES+ neural progenitors. A critical threshold of Wnt agonism stimulated singular axial extensions while maintaining multiple cell lineages, such that organoids displayed regionalized anterior-to-posterior HOX gene expression with hindbrain (HOXB1) regions spatially distinct from brachial (HOXC6) and thoracic (HOXB9) regions. CRISPR interference-mediated silencing of TBXT, a Wnt pathway target, increased neuroepithelial compartmentalization, abrogated HOX expression and disrupted uniaxial elongation. Together, these results demonstrate the potent capacity of caudalized hPSC organoids to undergo axial elongation in a manner that can be used to dissect the cellular organization and patterning decisions that dictate early human nervous system development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.198275DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8254868PMC
June 2021

Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi.

Nat Commun 2020 11 3;11(1):5553. Epub 2020 Nov 3.

Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-3900, USA.

Cas9/gRNA-mediated gene-drive systems have advanced development of genetic technologies for controlling vector-borne pathogen transmission. These technologies include population suppression approaches, genetic analogs of insecticidal techniques that reduce the number of insect vectors, and population modification (replacement/alteration) approaches, which interfere with competence to transmit pathogens. Here, we develop a recoded gene-drive rescue system for population modification of the malaria vector, Anopheles stephensi, that relieves the load in females caused by integration of the drive into the kynurenine hydroxylase gene by rescuing its function. Non-functional resistant alleles are eliminated via a dominantly-acting maternal effect combined with slower-acting standard negative selection, and rare functional resistant alleles do not prevent drive invasion. Small cage trials show that single releases of gene-drive males robustly result in efficient population modification with ≥95% of mosquitoes carrying the drive within 5-11 generations over a range of initial release ratios.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-19426-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7609566PMC
November 2020

Active Genetic Neutralizing Elements for Halting or Deleting Gene Drives.

Mol Cell 2020 10 18;80(2):246-262.e4. Epub 2020 Sep 18.

Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA; Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, USA. Electronic address:

CRISPR-Cas9-based gene drive systems possess the inherent capacity to spread progressively throughout target populations. Here we describe two self-copying (or active) guide RNA-only genetic elements, called e-CHACRs and ERACRs. These elements use Cas9 produced in trans by a gene drive either to inactivate the cas9 transgene (e-CHACRs) or to delete and replace the gene drive (ERACRs). e-CHACRs can be inserted at various genomic locations and carry two or more gRNAs, the first copying the e-CHACR and the second mutating and inactivating the cas9 transgene. Alternatively, ERACRs are inserted at the same genomic location as a gene drive, carrying two gRNAs that cut on either side of the gene drive to excise it. e-CHACRs efficiently inactivate Cas9 and can drive to completion in cage experiments. Similarly, ERACRs, particularly those carrying a recoded cDNA-restoring endogenous gene activity, can drive reliably to fully replace a gene drive. We compare the strengths of these two systems.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2020.09.003DOI Listing
October 2020

Sexually dimorphic venom proteins in long-jawed orb-weaving spiders () comprise novel gene families.

PeerJ 2018 1;6:e4691. Epub 2018 Jun 1.

Department of Biology, East Carolina University, Greenville, NC, United States of America.

Venom has been associated with the ecological success of many groups of organisms, most notably reptiles, gastropods, and arachnids. In some cases, diversification has been directly linked to tailoring of venoms for dietary specialization. Spiders in particular are known for their diverse venoms and wide range of predatory behaviors, although there is much to learn about scales of variation in venom composition and function. The current study focuses on venom characteristics in different sexes within a species of spider. We chose the genus (Tetragnathidae) because of its unusual courtship behavior involving interlocking of the venom delivering chelicerae (i.e., the jaws), and several species in the genus are already known to have sexually dimorphic venoms. Here, we use transcriptome and proteome analyses to identify venom components that are dimorphic in . We present cDNA sequences including unique, male-specific high molecular weight proteins that have remote, if any, detectable similarity to known venom components in spiders or other venomous lineages and have no detectable homologs in existing databases. While the function of these proteins is not known, their presence in association with the cheliceral locking mechanism during mating together with the presence of prolonged male-male mating attempts in a related, cheliceral-locking species () lacking the dimorphism suggests potential for a role in sexual communication.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7717/peerj.4691DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985773PMC
June 2018
-->