Publications by authors named "Ellen J Wehrens"

21 Publications

  • Page 1 of 1

Revealing the spatio-phenotypic patterning of cells in healthy and tumor tissues with mLSR-3D and STAPL-3D.

Nat Biotechnol 2021 Jun 3. Epub 2021 Jun 3.

Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.

Despite advances in three-dimensional (3D) imaging, it remains challenging to profile all the cells within a large 3D tissue, including the morphology and organization of the many cell types present. Here, we introduce eight-color, multispectral, large-scale single-cell resolution 3D (mLSR-3D) imaging and image analysis software for the parallelized, deep learning-based segmentation of large numbers of single cells in tissues, called segmentation analysis by parallelization of 3D datasets (STAPL-3D). Applying the method to pediatric Wilms tumor, we extract molecular, spatial and morphological features of millions of cells and reconstruct the tumor's spatio-phenotypic patterning. In situ population profiling and pseudotime ordering reveals a highly disorganized spatial pattern in Wilms tumor compared to healthy fetal kidney, yet cellular profiles closely resembling human fetal kidney cells could be observed. In addition, we identify previously unreported tumor-specific populations, uniquely characterized by their spatial embedding or morphological attributes. Our results demonstrate the use of combining mLSR-3D and STAPL-3D to generate a comprehensive cellular map of human tumors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41587-021-00926-3DOI Listing
June 2021

LGR6 marks nephron progenitor cells.

Dev Dyn 2021 Apr 13. Epub 2021 Apr 13.

Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.

Background: Nephron progenitor cells (NPCs) undergo a stepwise process to generate all mature nephron structures. Mesenchymal to epithelial transition (MET) is considered a multistep process of NPC differentiation to ensure progressive establishment of new nephrons. However, despite this important role, to date, no marker for NPCs undergoing MET in the nephron exists.

Results: Here, we identify LGR6 as a NPC marker, expressed in very early cap mesenchyme, pre-tubular aggregates, renal vesicles, and in segments of S-shaped bodies, following the trajectory of MET. By using a lineage tracing approach in embryonic explants in combination with confocal imaging and single-cell RNA sequencing, we provide evidence for the multiple fates of LGR6+ cells during embryonic nephrogenesis. Moreover, by using long-term in vivo lineage tracing, we show that postnatal LGR6+ cells are capable of generating the multiple lineages of the nephrons.

Conclusions: Given the profound early mesenchymal expression and MET signature of LGR6 cells, together with the lineage tracing of mesenchymal LGR6 cells, we conclude that LGR6+ cells contribute to all nephrogenic segments by undergoing MET. LGR6+ cells can therefore be considered an early committed NPC population during embryonic and postnatal nephrogenesis with potential regenerative capability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvdy.346DOI Listing
April 2021

Long-term culture, genetic manipulation and xenotransplantation of human normal and breast cancer organoids.

Nat Protoc 2021 04 10;16(4):1936-1965. Epub 2021 Mar 10.

Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.

Organoid technology has revolutionized the study of human organ development, disease and therapy response tailored to the individual. Although detailed protocols are available for the generation and long-term propagation of human organoids from various organs, such methods are lacking for breast tissue. Here we provide an optimized, highly versatile protocol for long-term culture of organoids derived from either normal human breast tissues or breast cancer (BC) tissues, as well as culturing conditions for a panel of 45 biobanked samples, including BC organoids covering all major disease subtypes (triple-negative, estrogen receptor-positive/progesterone receptor-positive and human epidermal growth receptor 2-positive). Additionally, we provide methods for genetic manipulation by Lipofectamine 2000, electroporation or lentivirus and subsequent organoid selection and clonal culture. Finally, we introduce an optimized method for orthotopic organoid transplantation in mice, which includes injection of organoids and estrogen pellets without the need for surgery. Organoid derivation from tissue fragments until the first split takes 7-21 d; generation of genetically manipulated clonal organoid cultures takes 14-21 d; and organoid expansion for xenotransplantation takes >4 weeks.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41596-020-00474-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221035PMC
April 2021

Anti-GD2-IRDye800CW as a targeted probe for fluorescence-guided surgery in neuroblastoma.

Sci Rep 2020 10 19;10(1):17667. Epub 2020 Oct 19.

Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.

Neuroblastoma resection represents a major challenge in pediatric surgery, because of the high risk of complications. Fluorescence-guided surgery (FGS) could lower this risk by facilitating discrimination of tumor from normal tissue and is gaining momentum in adult oncology. Here, we provide the first molecular-targeted fluorescent agent for FGS in pediatric oncology, by developing and preclinically evaluating a GD2-specific tracer consisting of the immunotherapeutic antibody dinutuximab-beta, recently approved for neuroblastoma treatment, conjugated to near-infrared (NIR) fluorescent dye IRDye800CW. We demonstrated specific binding of anti-GD2-IRDye800CW to human neuroblastoma cells in vitro and in vivo using xenograft mouse models. Furthermore, we defined an optimal dose of 1 nmol, an imaging time window of 4 days after administration and show that neoadjuvant treatment with anti-GD2 immunotherapy does not interfere with fluorescence imaging. Importantly, as we observed universal, yet heterogeneous expression of GD2 on neuroblastoma tissue of a wide range of patients, we implemented a xenograft model of patient-derived neuroblastoma organoids with differential GD2 expression and show that even low GD2 expressing tumors still provide an adequate real-time fluorescence signal. Hence, the imaging advancement presented in this study offers an opportunity for improving surgery and potentially survival of a broad group of children with neuroblastoma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-74464-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7573590PMC
October 2020

Single-Cell Resolution Three-Dimensional Imaging of Intact Organoids.

J Vis Exp 2020 06 5(160). Epub 2020 Jun 5.

Princess Máxima Center for Pediatric Oncology; Department of Cancer Research, Oncode Institute, Hubrecht Institute-KNAW Utrecht; Cancer Genomics Center (CGC);

Organoid technology, in vitro 3D culturing of miniature tissue, has opened a new experimental window for cellular processes that govern organ development and function as well as disease. Fluorescence microscopy has played a major role in characterizing their cellular composition in detail and demonstrating their similarity to the tissue they originate from. In this article, we present a comprehensive protocol for high-resolution 3D imaging of whole organoids upon immunofluorescent labeling. This method is widely applicable for imaging of organoids differing in origin, size and shape. Thus far we have applied the method to airway, colon, kidney, and liver organoids derived from healthy human tissue, as well as human breast tumor organoids and mouse mammary gland organoids. We use an optical clearing agent, FUnGI, which enables the acquisition of whole 3D organoids with the opportunity for single-cell quantification of markers. This three-day protocol from organoid harvesting to image analysis is optimized for 3D imaging using confocal microscopy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3791/60709DOI Listing
June 2020

Understanding and Targeting Tumor Cell Invasion in Diffuse Intrinsic Pontine Glioma.

Front Oncol 2020 7;10:92. Epub 2020 Feb 7.

Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.

Diffuse Intrinsic Pontine Glioma (DIPG) is a rare, highly aggressive pediatric brain tumor that originates in the pons. DIPG is untreatable and universally fatal, with a median life expectancy of less than a year. Resection is not an option, due to the anatomical location of the tumor, radiotherapy has limited effect and no chemotherapeutic or targeted treatment approach has proven to be successful. This poor prognosis is partly attributed to the tumor's highly infiltrative diffuse and invasive spread. Thus, targeting the invasive behavior of DIPG has the potential to be of therapeutic value. In order to target DIPG invasion successfully, detailed mechanistic knowledge on the underlying drivers is required. Here, we review both DIPG tumor cell's intrinsic molecular processes and extrinsic environmental factors contributing to DIPG invasion. Importantly, DIPG represents a heterogenous disease and through advances in whole-genome sequencing, different subtypes of disease based on underlying driver mutations are now being recognized. Recent evidence also demonstrates intra-tumor heterogeneity in terms of invasiveness and implies that highly infiltrative tumor subclones can enhance the migratory behavior of neighboring cells. This might partially be mediated by "tumor microtubes," long membranous extensions through which tumor cells connect and communicate, as well as through the secretion of extracellular vesicles. Some of the described processes involved in invasion are already being targeted in clinical trials. However, more research into the mechanisms of DIPG invasion is urgently needed and might result in the development of an effective therapy for children suffering from this devastating disease. We discuss the implications of newly discovered invasive mechanisms for therapeutic targeting and the challenges therapy development face in light of disease in the developing brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fonc.2020.00092DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020612PMC
February 2020

High-resolution 3D imaging of fixed and cleared organoids.

Nat Protoc 2019 06 3;14(6):1756-1771. Epub 2019 May 3.

Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.

In vitro 3D organoid systems have revolutionized the modeling of organ development and diseases in a dish. Fluorescence microscopy has contributed to the characterization of the cellular composition of organoids and demonstrated organoids' phenotypic resemblance to their original tissues. Here, we provide a detailed protocol for performing high-resolution 3D imaging of entire organoids harboring fluorescence reporters and upon immunolabeling. This method is applicable to a wide range of organoids of differing origins and of various sizes and shapes. We have successfully used it on human airway, colon, kidney, liver and breast tumor organoids, as well as on mouse mammary gland organoids. It includes a simple clearing method utilizing a homemade fructose-glycerol clearing agent that captures 3D organoids in full and enables marker quantification on a cell-by-cell basis. Sample preparation has been optimized for 3D imaging by confocal, super-resolution confocal, multiphoton and light-sheet microscopy. From organoid harvest to image analysis, the protocol takes 3 d.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41596-019-0160-8DOI Listing
June 2019

IL-27 regulates the number, function and cytotoxic program of antiviral CD4 T cells and promotes cytomegalovirus persistence.

PLoS One 2018 25;13(7):e0201249. Epub 2018 Jul 25.

Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America.

The role of IL-27 in antiviral immunity is still incompletely understood, especially in the context of chronic viruses that induce a unique environment in their infected host. Cytomegalovirus (CMV) establishes a persistent, tissue localized infection followed by lifelong latency. CMV infects the majority of people and although asymptomatic in healthy individuals, can cause serious disease or death in those with naïve or compromised immune systems. Therefore, there is an urgent need to develop a protective CMV vaccine for people at-risk and identifying key regulators of the protective immune response towards CMV will be crucial. Here we studied mouse CMV (MCMV) in IL-27 receptor deficient animals (Il27ra-/-) to assess the role of IL-27 in regulating CMV immunity. We found that IL-27 enhanced the number of antiviral CD4 T cells upon infection. However, in contrast to a well-established role for CD4 T cells in controlling persistent replication and a positive effect of IL-27 on their numbers, IL-27 promoted MCMV persistence in the salivary gland. This coincided with IL-27 mediated induction of IL-10 production in CD4 T cells. Moreover, IL-27 reduced expression of the transcription factor T-bet and restricted a cytotoxic phenotype in antiviral CD4 T cells. This is a highly intriguing result given the profound cytotoxic phenotype of CMV-specific CD4 T cells seen in humans and we established that dendritic cell derived IL-27 was responsible for this effect. Together, these data show that IL-27 regulates the number and effector functions of MCMV-specific CD4 T cells and could be targeted to enhance control of persistent/latent infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201249PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059457PMC
January 2019

Self-Renewal and Toll-like Receptor Signaling Sustain Exhausted Plasmacytoid Dendritic Cells during Chronic Viral Infection.

Immunity 2018 04;48(4):730-744.e5

Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093, USA. Electronic address:

Although characterization of T cell exhaustion has unlocked powerful immunotherapies, the mechanisms sustaining adaptations of short-lived innate cells to chronic inflammatory settings remain unknown. During murine chronic viral infection, we found that concerted events in bone marrow and spleen mediated by type I interferon (IFN-I) and Toll-like receptor 7 (TLR7) maintained a pool of functionally exhausted plasmacytoid dendritic cells (pDCs). In the bone marrow, IFN-I compromised the number and the developmental capacity of pDC progenitors, which generated dysfunctional pDCs. Concurrently, exhausted pDCs in the periphery were maintained by self-renewal via IFN-I- and TLR7-induced proliferation of CD4 subsets. On the other hand, pDC functional loss was mediated by TLR7, leading to compromised IFN-I production and resistance to secondary infection. These findings unveil the mechanisms sustaining a self-perpetuating pool of functionally exhausted pDCs and provide a framework for deciphering long-term exhaustion of other short-lived innate cells during chronic inflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.immuni.2018.03.020DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937984PMC
April 2018

Interleukin-27R Signaling Mediates Early Viral Containment and Impacts Innate and Adaptive Immunity after Chronic Lymphocytic Choriomeningitis Virus Infection.

J Virol 2018 06 29;92(12). Epub 2018 May 29.

Molecular Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, California, USA

Chronic viral infections represent a major challenge to the host immune response, and a unique network of immunological elements, including cytokines, are required for their containment. By using a model persistent infection with the natural murine pathogen lymphocytic choriomeningitis virus clone 13 (LCMV Cl13) we investigated the role of one such cytokine, interleukin-27 (IL-27), in the control of chronic infection. We found that IL-27 receptor (IL-27R) signaling promoted control of LCMV Cl13 as early as days 1 and 5 after infection and that transcripts were rapidly elevated in multiple subsets of dendritic cells (DCs) and myeloid cells. In particular, plasmacytoid DCs (pDCs), the most potent type 1 interferon (IFN-I)-producing cells, significantly increased in a Toll-like receptor 7 (TLR7)-dependent fashion. Notably, mice deficient in an IL-27-specific receptor, WSX-1, exhibited a pleiotropy of innate and adaptive immune alterations after chronic lymphocytic choriomeningitis virus (LCMV) infection, including compromised NK cell cytotoxicity and antibody responses. While, the majority of these immune alterations appeared to be cell extrinsic, cell-intrinsic IL-27R was necessary to maintain early pDC numbers, which, alongside lower IFN-I transcription in CD11b DCs and myeloid cells, may explain the compromised IFN-I elevation that we observed early after LCMV Cl13 infection in IL-27R-deficient mice. Together, these data highlight the critical role of IL-27 in enabling optimal antiviral immunity early and late after infection with a systemic persistent virus and suggest that a previously unrecognized positive-feedback loop mediated by IL-27 in pDCs might be involved in this process. Persistently replicating pathogens, such as human immunodeficiency virus, hepatitis B virus, and hepatitis C virus, represent major health problems worldwide. These infections impose a long-term challenge on the host immune system, which must be heavily and continuously regulated to keep pathogen replication in check without causing fatal immunopathology. Using a persistently replicating rodent pathogen, LCMV, in its natural host, we identified the cellular sources and effects of one important regulatory pathway, interleukin-27 receptor WSX-1 signaling, that is required for both very early and late restriction of chronic (but not acute) infection. We found that WSX-1 was necessary to promote innate immunity and the development of aberrant adaptive immune responses. This not only highlights the role of IL-27 receptor signaling in regulating distinct host responses that are known to be necessary to control chronic infections, but also positions IL-27 as a potential therapeutic target for their modulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.02196-17DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974502PMC
June 2018

Early transcriptional and epigenetic regulation of CD8 T cell differentiation revealed by single-cell RNA sequencing.

Nat Immunol 2017 04 20;18(4):422-432. Epub 2017 Feb 20.

Department of Cellular and Molecular Medicine, University of California, San Diego, California, USA.

During microbial infection, responding CD8 T lymphocytes differentiate into heterogeneous subsets that together provide immediate and durable protection. To elucidate the dynamic transcriptional changes that underlie this process, we applied a single-cell RNA-sequencing approach and analyzed individual CD8 T lymphocytes sequentially throughout the course of a viral infection in vivo. Our analyses revealed a striking transcriptional divergence among cells that had undergone their first division and identified previously unknown molecular determinants that controlled the fate specification of CD8 T lymphocytes. Our findings suggest a model for the differentiation of terminal effector cells initiated by an early burst of transcriptional activity and subsequently refined by epigenetic silencing of transcripts associated with memory lymphocytes, which highlights the power and necessity of single-cell approaches.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ni.3688DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5360497PMC
April 2017

TGF-β receptor maintains CD4 T helper cell identity during chronic viral infections.

J Clin Invest 2016 10 6;126(10):3799-3813. Epub 2016 Sep 6.

Suppression of CD8 and CD4 T cells is a hallmark in chronic viral infections, including hepatitis C and HIV. While multiple pathways are known to inhibit CD8 T cells, the host molecules that restrict CD4 T cell responses are less understood. Here, we used inducible and CD4 T cell-specific deletion of the gene encoding the TGF-β receptor during chronic lymphocytic choriomeningitis virus infection in mice, and determined that TGF-β signaling restricted proliferation and terminal differentiation of antiviral CD4 T cells. TGF-β signaling also inhibited a cytotoxic program that includes granzymes and perforin expression at both early and late stages of infection in vivo and repressed the transcription factor eomesodermin. Overexpression of eomesodermin was sufficient to recapitulate in great part the phenotype of TGF-β receptor-deficient CD4 T cells, while SMAD4 was necessary for CD4 T cell accumulation and differentiation. TGF-β signaling also restricted accumulation and differentiation of CD4 T cells and reduced the expression of cytotoxic molecules in mice and humans infected with other persistent viruses. These data uncovered an eomesodermin-driven CD4 T cell program that is continuously suppressed by TGF-β signaling. During chronic viral infection, this program limits CD4 T cell responses while maintaining CD4 T helper cell identity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI87041DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5096797PMC
October 2016

Autologous stem cell transplantation aids autoimmune patients by functional renewal and TCR diversification of regulatory T cells.

Blood 2016 Jan 19;127(1):91-101. Epub 2015 Oct 19.

Laboratory of Translational Immunology, Department of Paediatric Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands;

Autologous hematopoietic stem cell transplantation (HSCT) is increasingly considered for patients with severe autoimmune diseases whose prognosis is poor with standard treatments. Regulatory T cells (Tregs) are thought to be important for disease remission after HSCT. However, eliciting the role of donor and host Tregs in autologous HSCT is not possible in humans due to the autologous nature of the intervention. Therefore, we investigated their role during immune reconstitution and re-establishment of immune tolerance and their therapeutic potential following congenic bone marrow transplantation (BMT) in a proteoglycan-induced arthritis (PGIA) mouse model. In addition, we determined Treg T-cell receptor (TCR) CDR3 diversity before and after HSCT in patients with juvenile idiopathic arthritis and juvenile dermatomyositis. In the PGIA BMT model, after an initial predominance of host Tregs, graft-derived Tregs started dominating and displayed a more stable phenotype with better suppressive capacity. Patient samples revealed a striking lack of diversity of the Treg repertoire before HSCT. This ameliorated after HSCT, confirming reset of the Treg compartment following HSCT. In the mouse model, a therapeutic approach was initiated by infusing extra Foxp3(GFP+) Tregs during BMT. Infusion of Foxp3(GFP+) Tregs did not elicit additional clinical improvement but conversely delayed reconstitution of the graft-derived T-cell compartment. These data indicate that HSCT-mediated amelioration of autoimmune disease involves renewal of the Treg pool. In addition, infusion of extra Tregs during BMT results in a delayed reconstitution of T-cell compartments. Therefore, Treg therapy may hamper development of long-term tolerance and should be approached with caution in the clinical autologous setting.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2015-06-649145DOI Listing
January 2016

Self-Sustained Resistance to Suppression of CD8+ Teff Cells at the Site of Autoimmune Inflammation Can Be Reversed by Tumor Necrosis Factor and Interferon-γ Blockade.

Arthritis Rheumatol 2016 Jan;68(1):229-36

University Medical Center Utrecht, Utrecht, The Netherlands.

Objective: Resistance of Teff cells to Treg cell-mediated suppression contributes to the breakdown of peripheral tolerance in the inflamed joints of patients with juvenile idiopathic arthritis (JIA). However, unanswered questions are whether this resistant phenotype is self-sustained and whether CD8+ and CD4+ Teff cells share the same mechanism of resistance to suppression. We undertook this study to investigate intrinsic resistance of CD8+ Teff cells to suppression and to determine how this can be targeted therapeutically.

Methods: CD8+ or CD4+ Teff cells were cultured with or without antigen-presenting cells (APCs) in Treg cell-dependent and -independent suppression assays. Synovial fluid (SF)-derived Teff cells were crosscultured with peripheral blood (PB) Treg cells from JIA patients or healthy controls. Tumor necrosis factor (TNF) or interferon-γ (IFNγ) blocking agents were used to restore Teff cell responsiveness to suppression.

Results: Suppression of cell proliferation and cytokine production in CD8+ Teff cells from the SF of JIA patients was severely impaired compared to that in CD8+ Teff cells from the PB of JIA patients, regardless of the presence of APCs and CD4+ Teff cells. Similar to CD4+ Teff cells, impaired suppression of CD8+ Teff cells was shown to be an intrinsic feature of this cell population. While TNF blockade restored both CD8+ and CD4+ Teff cell susceptibility to suppression, autocrine release of IFNγ selectively sustained CD8+ Teff cell resistance, which could be relieved by IFNγ blockade.

Conclusion: Unlike CD4+ Teff cells, resistance of CD8+ Teff cells to suppression at the site of autoimmune inflammation is maintained by autocrine release of IFNγ, and blockade of IFNγ restores CD8+ Teff cell responsiveness to suppression. These findings indicate a potential therapeutic value of blocking IFNγ to restore immune regulation in JIA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/art.39418DOI Listing
January 2016

Anti-tumor necrosis factor α targets protein kinase B/c-Akt-induced resistance of effector cells to suppression in juvenile idiopathic arthritis.

Arthritis Rheum 2013 Dec;65(12):3279-84

Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.

Objective: To determine whether therapeutic strategies that block interleukin-6 (IL-6) or tumor necrosis factor α (TNFα) can improve the responsiveness of Teff cells to suppression in patients with juvenile idiopathic arthritis (JIA).

Methods: Synovial fluid mononuclear cells (SFMCs) from the inflamed joints of patients with JIA were cultured in the presence of etanercept or anti-IL-6 in vitro, and protein kinase B (PKB)/c-Akt activation and responsiveness to suppression were measured. In addition, the in vivo effects of TNFα blockade were investigated using peripheral blood mononuclear cells obtained from patients before and after the start of etanercept therapy.

Results: In vitro treatment of SFMCs with anti-IL-6 led to improved Treg cell-mediated suppression of cell proliferation in some but not all patients. Blocking TNFα with etanercept, however, clearly enhanced suppression, especially that of CD8+ T cells. In the presence of etanercept, PKB/c-Akt activation of Teff cells was reduced, and cells became more susceptible to transforming growth factor β-mediated suppression, indicating that anti-TNFα directly targets resistant Teff cells.

Conclusion: This study is the first to show that anti-TNFα targets the resistance of Teff cells to suppression, resulting in improved regulation of inflammatory effector cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/art.38132DOI Listing
December 2013

T cells out of control--impaired immune regulation in the inflamed joint.

Nat Rev Rheumatol 2013 01;9(1):34-42

Center for Molecular and Cellular Intervention, Department of Paediatric Immunology, University Medical Centre Utrecht, P.O., AB Utrecht, The Netherlands.

Since the discovery of FOXP3+ regulatory T (T(REG)) cells over 15 years ago, intensive research has focused on their presence, phenotype and function in autoimmune disease. Whether deficiencies in T(REG) cells underlie autoimmune pathology and whether, or how, therapeutic approaches based on these cells might be successful is still the subject of debate. The potential role of T(REG)-cell extrinsic factors, such as proinflammatory cytokines and resistance of effector T cells to suppression, as the cause of regulatory defects in chronic autoimmune inflammation is an intensive area of research. It is now clear that, at the site of inflammation, antigen presenting cells (APCs) and proinflammatory cytokines drive effector T cell skewing and plasticity, and that these T cells can become unresponsive to regulation. In addition, expansion and function of T(REG) cells is affected by the inflammatory environment; indeed, new data suggest that, in certain conditions, T(REG) cells promote inflammation. This Review summarizes the latest findings on changes in effector T cell homeostasis in autoimmune disease and focuses on how mechanisms that normally regulate these cells are affected in the inflamed joints of patients with arthritis. These findings have important clinical implications and will affect the development of new therapeutic strategies for autoimmune arthritis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nrrheum.2012.149DOI Listing
January 2013

Functional human regulatory T cells fail to control autoimmune inflammation due to PKB/c-akt hyperactivation in effector cells.

Blood 2011 Sep 9;118(13):3538-48. Epub 2011 Aug 9.

Center for Molecular and Cellular Intervention, Department of Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.

During the last decade research has focused on the application of FOXP3(+) regulatory T cells (Tregs) in the treatment of autoimmune disease. However, thorough functional characterization of these cells in patients with chronic autoimmune disease, especially at the site of inflammation, is still missing. Here we studied Treg function in patients with juvenile idiopathic arthritis (JIA) and observed that Tregs from the peripheral blood as well as the inflamed joints are fully functional. Nevertheless, Treg-mediated suppression of cell proliferation and cytokine production by effector cells from the site of inflammation was severely impaired, because of resistance to suppression. This resistance to suppression was not caused by a memory phenotype of effector T cells or activation status of antigen presenting cells. Instead, activation of protein kinase B (PKB)/c-akt was enhanced in inflammatory effector cells, at least partially in response to TNFα and IL-6, and inhibition of this kinase restored responsiveness to suppression. We are the first to show that PKB/c-akt hyperactivation causes resistance of effector cells to suppression in human autoimmune disease. Furthermore, these findings suggest that for a Treg enhancing strategy to be successful in the treatment of autoimmune inflammation, resistance because of PKB/c-akt hyperactivation should be targeted as well.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2010-12-328187DOI Listing
September 2011

Treating arthritis by immunomodulation: is there a role for regulatory T cells?

Rheumatology (Oxford) 2010 Sep 12;49(9):1632-44. Epub 2010 May 12.

Department of Pediatric Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht (UMCU), Lundlaan 6, 3584 EA, Utrecht, The Netherlands.

The discovery of regulatory T cells almost 15 years ago initiated a new and exciting research area. The growing evidence for a critical role of these cells in controlling autoimmune responses has raised expectations for therapeutic application of regulatory T cells in patients with autoimmune arthritis. Here, we review recent studies investigating the presence, phenotype and function of these cells in patients with RA and juvenile idiopathic arthritis (JIA) and consider their therapeutic potential. Both direct and indirect methods to target these cells will be discussed. Arguably, a therapeutic approach that combines multiple regulatory T-cell-enhancing strategies could be most successful for clinical application.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/rheumatology/keq130DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203406PMC
September 2010

Human regulatory T cell suppressive function is independent of apoptosis induction in activated effector T cells.

PLoS One 2009 Sep 25;4(9):e7183. Epub 2009 Sep 25.

Department of Pediatric Immunology, Center for Molecular and Cellular Intervention, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.

Background: CD4(+)CD25(+)FOXP3(+) Regulatory T cells (Treg) play a central role in the immune balance to prevent autoimmune disease. One outstanding question is how Tregs suppress effector immune responses in human. Experiments in mice demonstrated that Treg restrict effector T cell (Teff) responses by deprivation of the growth factor IL-2 through Treg consumption, resulting in apoptosis of Teff.

Principal Findings: In this study we investigated the relevance of Teff apoptosis induction to human Treg function. To this end, we studied naturally occurring Treg (nTreg) from peripheral blood of healthy donors, and, to investigate Treg function in inflammation in vivo, Treg from synovial fluid of Juvenile Idiopathic Arthritis (JIA) patients (SF-Treg). Both nTreg and SF-Treg suppress Teff proliferation and cytokine production efficiently as predicted. However, in contrast with murine Treg, neither nTreg nor SF-Treg induce apoptosis in Teff. Furthermore, exogenously supplied IL-2 and IL-7 reverse suppression, but do not influence apoptosis of Teff.

Significance: Our functional data here support that Treg are excellent clinical targets to counteract autoimmune diseases. For optimal functional outcome in human clinical trials, future work should focus on the ability of Treg to suppress proliferation and cytokine production of Teff, rather than induction of Teff apoptosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007183PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746309PMC
September 2009

The CD28/CTLA-4-B7 signaling pathway is involved in both allergic sensitization and tolerance induction to orally administered peanut proteins.

J Immunol 2007 Jun;178(11):6894-900

Utrecht University, Institute for Risk Assessment Sciences, Department of Immunotoxicology, Utrecht, The Netherlands.

Dendritic cells are believed to play an essential role in regulating the balance between immunogenic and tolerogenic responses to mucosal Ags by controlling T cell differentiation and activation via costimulatory and coinhibitory signals. The CD28/CTLA-4-CD80/CD86 signaling pathway appears to be one of the most important regulators of T cell responses but its exact role in responses to orally administered proteins remains to be elucidated. In the present study, the involvement of the CD28/CTLA-4-CD80/CD86 costimulatory pathway in the induction of allergic sensitization and oral tolerance to peanut proteins was investigated. In both an established C3H/HeOuJ mouse model of peanut hypersensitivity and an oral tolerance model to peanut, CD28/CTLA-4-CD80/CD86 interactions were blocked using the fusion protein CTLA-4Ig. To examine the relative contribution of CD80- and CD86-mediated costimulation in these models, anti-CD80 and anti-CD86 blocking Abs were used. In the hypersensitivity model, CTLA-4Ig treatment prevented the development of peanut extract-induced cytokine responses, peanut extract-specific IgG1, IgG2a, and IgE production and peanut extract-induced challenge responses. Blocking of CD80 reduced, whereas anti-CD86 treatment completely inhibited, the induction of peanut extract-specific IgE. Normal tolerance induction to peanut extract was found following CTLA-4Ig, anti-CD86, or anti-CD80 plus anti-CD86 treatment, whereas blockade of CD80 impaired the induction of oral tolerance. We show that CD28/CTLA-4-CD80/CD86 signaling is essential for the development of allergic responses to peanut and that CD86 interaction is most important in inducing peanut extract-specific IgE responses. Additionally, our data suggest that CD80 but not CD86 interaction with CTLA-4 is crucial for the induction of low dose tolerance to peanut.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.178.11.6894DOI Listing
June 2007
-->