Publications by authors named "Elizaveta E Fomina"

2 Publications

  • Page 1 of 1

Inhibition of abasic site cleavage in bubble DNA by multifunctional protein YB-1.

J Mol Recognit 2015 Feb 21;28(2):117-23. Epub 2015 Jan 21.

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia.

Y-box binding protein 1 (YB-1) is widely known to participate in a multiple DNA and RNA processing events in the living cell. YB-1 is also regarded as a putative component of DNA repair. This possibility is supported by relocalization of YB-1 into the nucleus following genotoxic stress. Increased affinity of YB-1 for damaged DNA, especially in its single-stranded form, and its functional interaction with proteins responsible for the initiation of apurinic/apyrimidinic (AP) site repair, namely, AP endonuclease 1 and DNA glycosylase NEIL1, suggest that YB-1 could be involved in the repair of AP sites as a regulatory protein. Here we show that YB-1 has a significant inhibitory effect on the cleavage of AP sites located in single-stranded DNA and in DNA bubble structures. Such interference may be considered as a possible mechanism to prevent single-stranded intermediates of DNA replication, transcription and repair from being converted into highly genotoxic DNA strand breaks, thus allowing the cell to coordinate different DNA processing mechanisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmr.2435DOI Listing
February 2015

Effect of the multifunctional proteins RPA, YB-1, and XPC repair factor on AP site cleavage by DNA glycosylase NEIL1.

J Mol Recognit 2012 Apr;25(4):224-33

Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Prospect Lavrentieva 8, Novosibirsk, 630090, Russia.

DNA glycosylases are key enzymes in the first step of base excision DNA repair, recognizing DNA damage and catalyzing the release of damaged nucleobases. Bifunctional DNA glycosylases also possess associated apurinic/apyrimidinic (AP) lyase activity that nick the damaged DNA strand at an abasic (or AP) site, formed either spontaneously or at the first step of repair. NEIL1 is a bifunctional DNA glycosylase capable of processing lesions, including AP sites, not only in double-stranded but also in single-stranded DNA. Here, we show that proteins participating in DNA damage response, YB-1 and RPA, affect AP site cleavage by NEIL1. Stimulation of the AP lyase activity of NEIL1 was observed when an AP site was located in a 60 nt-long double-stranded DNA. Both RPA and YB-1 inhibited AP site cleavage by NEIL1 when the AP site was located in single-stranded DNA. Taking into account a direct interaction of YB-1 with the AP site, located in single-stranded DNA, and the high affinity of both YB-1 and RPA for single-stranded DNA, this behavior is presumably a consequence of a competition with NEIL1 for the DNA substrate. Xeroderma pigmentosum complementation group C protein (XPC), a key protein of another DNA repair pathway, was shown to interact directly with AP sites but had no effect on AP site cleavage by NEIL1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmr.2182DOI Listing
April 2012