Publications by authors named "Elisson Romanel"

19 Publications

  • Page 1 of 1

Transcriptome Analysis of (Cactaceae) Reveals Metabolic Changes During Shoot Organogenesis Induction.

Front Plant Sci 2021 20;12:697556. Epub 2021 Aug 20.

Plant Biology Department/Laboratory of Plant Tissue Culture II-BIOAGRO, Federal University of Viçosa (UFV), Viçosa, Brazil.

is an endangered cactus highly valued for its ornamental properties. shoot production of this species provides a sustainable alternative to overharvesting from the wild; however, its propagation could be improved if the genetic regulation underlying its developmental processes were known. The present study generated transcriptome data, describing shoot organogenesis induction in . Total RNA was extracted from explants before (control) and after shoot organogenesis induction (treated). A total of 14,478 unigenes (average length, 520 bases) were obtained using Illumina HiSeq 3000 (Illumina Inc., San Diego, CA, USA) sequencing and transcriptome assembly. Filtering for differential expression yielded 2,058 unigenes. Pairwise comparison of treated vs. control genes revealed that 1,241 (60.3%) unigenes exhibited no significant change, 226 (11%) were downregulated, and 591 (28.7%) were upregulated. Based on database analysis, more transcription factor families and unigenes appeared to be upregulated in the treated samples than in controls. Expression of () and () genes, both of which were upregulated in treated samples, was further validated by real-time quantitative PCR (RT-qPCR). Differences in gene expression patterns between control and treated samples indicate substantial changes in the primary and secondary metabolism of after the induction of shoot organogenesis. These results help to clarify the molecular genetics and functional genomic aspects underlying propagation in the Cactaceae family.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fpls.2021.697556DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417902PMC
August 2021

Transcriptomic Analysis of Changes in Gene Expression During Flowering Induction in Sugarcane Under Controlled Photoperiodic Conditions.

Front Plant Sci 2021 15;12:635784. Epub 2021 Jun 15.

Laboratório de Biologia de Sistemas, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil.

Flowering is of utmost relevance for the agricultural productivity of the sugarcane bioeconomy, but data and knowledge of the genetic mechanisms underlying its photoperiodic induction are still scarce. An understanding of the molecular mechanisms that regulate the transition from vegetative to reproductive growth in sugarcane could provide better control of flowering for breeding. This study aimed to investigate the transcriptome of +1 mature leaves of a sugarcane cultivar subjected to florally inductive and non-inductive photoperiodic treatments to identify gene expression patterns and molecular regulatory modules. We identified 7,083 differentially expressed (DE) genes, of which 5,623 showed significant identity to other plant genes. Functional group analysis showed differential regulation of important metabolic pathways involved in plant development, such as plant hormones (i.e., cytokinin, gibberellin, and abscisic acid), light reactions, and photorespiration. Gene ontology enrichment analysis revealed evidence of upregulated processes and functions related to the response to abiotic stress, photoprotection, photosynthesis, light harvesting, and pigment biosynthesis, whereas important categories related to growth and vegetative development of plants, such as plant organ morphogenesis, shoot system development, macromolecule metabolic process, and lignin biosynthesis, were downregulated. Also, out of 76 sugarcane transcripts considered putative orthologs to flowering genes from other plants (such as , , and ), 21 transcripts were DE. Nine DE genes related to flowering and response to photoperiod were analyzed either at mature or spindle leaves at two development stages corresponding to the early stage of induction and inflorescence primordia formation. Finally, we report a set of flowering-induced long non-coding RNAs and describe their level of conservation to other crops, many of which showed expression patterns correlated against those in the functionally grouped gene network.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fpls.2021.635784DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8239368PMC
June 2021

Overexpression of a Sugarcane BAHD Acyltransferase Alters Hydroxycinnamate Content in Maize Cell Wall.

Front Plant Sci 2021 21;12:626168. Epub 2021 Apr 21.

Laboratório de Genômica de Plantas e Bioenergia (PGEMBL), Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, Brazil.

The purification of hydroxycinnamic acids [-coumaric acid (CA) and ferulic acid (FA)] from grass cell walls requires high-cost processes. Feedstocks with increased levels of one hydroxycinnamate in preference to the other are therefore highly desirable. We identified and conducted expression analysis for nine BAHD acyltransferase genes from sugarcane. The high conservation of AT10 proteins, together with their similar gene expression patterns, supported a similar role in distinct grasses. Overexpression of in maize resulted in up to 75% increase in total CA content. Mild hydrolysis and derivatization followed by reductive cleavage (DFRC) analysis showed that CA increase was restricted to the hemicellulosic portion of the cell wall. Furthermore, total FA content was reduced up to 88%, resulting in a 10-fold increase in the CA/FA ratio. Thus, we functionally characterized a sugarcane gene involved in CA content on hemicelluloses and generated a C4 plant that is promising for valorizing CA production in biorefineries.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fpls.2021.626168DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8117936PMC
April 2021

Selection and validation of reference genes by RT-qPCR under photoperiodic induction of flowering in sugarcane (Saccharum spp.).

Sci Rep 2021 02 25;11(1):4589. Epub 2021 Feb 25.

Instituto Agronômico de Campinas, Centro de Cana, Ribeirão Preto, CEP14032-800, Brazil.

Although reference genes have previously been used in the expression analysis of genes involved in sugarcane flowering they had not been experimentally validated for stability and consistency of expression between different samples over a wide range of experimental conditions. Here we report the analysis of candidate reference genes in different tissue types, at different temporal time-points, in both short and long day photoperiodic treatments. The stability of the candidate reference genes in all conditions was evaluated with NormFinder, BestKeeper, and RefFinder algorithms that complement each other for a more robust analysis. As the Normfinder algorithm was more appropriate for our experimental conditions, greater emphasis was placed on Normfinder when choosing the most stable genes. UBQ1 and TUB were shown to be the most stable reference genes to use for normalizing RT-qPCR gene expression data during floral induction, whilst 25SrRNA1 and GAPDH were the least stable. Their use as a reference gene pair was validated by analyzing the expression of two differentially expressed target genes (PIL5 and LHP1). The UBQ1/TUB reference genes combination was able to reveal small significant differences in gene expression of the two target genes that were not detectable when using the least stable reference gene combination. These results can be used to inform the choice of reference genes to use in the study of the sugarcane floral induction pathway. Our work also demonstrates that both PIL5 and LHP1 are significantly up-regulated in the initial stages of photoperiodic induction of flowering in sugarcane.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-021-83918-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7907395PMC
February 2021

Genome-wide identification of the Dicer-like family in cotton and analysis of the DCL expression modulation in response to biotic stress in two contrasting commercial cultivars.

BMC Plant Biol 2019 Nov 15;19(1):503. Epub 2019 Nov 15.

Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brazil.

Background: Dicer-like proteins (DCLs) are essential players in RNA-silencing mechanisms, acting in gene regulation via miRNAs and in antiviral protection in plants and have also been associated to other biotic and abiotic stresses. To the best of our knowledge, despite being identified in some crops, cotton DCLs haven't been characterized until now. In this work, we characterized the DCLs of three cotton species and analyzed their expression profiles during biotic stress.

Results: As main results, 11 DCLs in the allotetraploid cotton Gossypium hirsutum, 7 and 6 in the diploid G. arboreum and G. raimondii, were identified, respectively. Among some DCLs duplications observed in these genomes, the presence of an extra DCL3 in the three cotton species were detected, which haven't been found in others eudicots. All the DCL types identified by in silico analysis in the allotetraploid cotton genome were able to generate transcripts, as observed by gene expression analysis in distinct tissues. Based on the importance of DCLs for plant defense against virus, responses of cotton DCLs to virus infection and/or herbivore attack using two commercial cotton cultivars (cv.), one susceptible (FM966) and another resistant (DO) to polerovirus CLRDV infection, were analyzed. Both cvs. Responded differently to virus infection. At the inoculation site, the resistant cv. showed strong induction of DCL2a and b, while the susceptible cv. showed a down-regulation of these genes, wherever DCL4 expression was highly induced. A time course of DCL expression in aerial parts far from inoculation site along infection showed that DCL2b and DCL4 were repressed 24 h after infection in the susceptible cotton. As CLRDV is aphid-transmitted, herbivore attack was also checked. Opposite expression pattern of DCL2a and b and DCL4 was observed for R and S cottons, showing that aphid feeding alone may induce DCL modulation.

Conclusions: Almost all the DCLs of the allotetraploide G. hirsutum cotton were found in their relative diploids. Duplications of DCL2 and DCL3 were found in the three species. All four classes of DCL responded to aphid attack and virus infection in G. hirsutum. DCLs initial responses against the virus itself and/or herbivore attack may be contributing towards virus resistance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12870-019-2112-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858778PMC
November 2019

De novo assembly and transcriptome of Pfaffia glomerata uncovers the role of photoautotrophy and the P450 family genes in 20-hydroxyecdysone production.

Protoplasma 2019 May 25;256(3):601-614. Epub 2018 Oct 25.

Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil.

Pfaffia glomerata is a medically important species because it produces the phytoecdysteroid 20-hydroxyecdysone (20-E). However, there has been no ready-to-use transcriptome data available in the literature for this plant. Here, we present de novo transcriptome sequencing of RNA from P. glomerata in order to investigate the 20-E production as well as to understand the biochemical pathway of secondary metabolites in this non-model species. We then analyze the effect of photoautotrophy on the production of 20-E genes phylogenetically identified followed by expression analysis. For this, total messenger RNA (mRNA) from leaves, stems, roots, and flowers was used to construct indexed mRNA libraries. Based on the similarity searches against plant non-redundant protein database, gene ontology, and eukaryotic orthologous groups, 164,439 transcripts were annotated. In addition, the effect of photoautotrophy in two genes putatively involved in the 20-E synthesis pathway was analyzed. The Phantom gene (CYP76C), a precursor of the route, showed increased expression in P. glomerata plants cultured under photoautotrophic conditions. This was accompanied by increased production of this metabolite indicating a putative involvement in 20-E synthesis. This work reveals that several genes in the P. glomerata transcriptome are related to secondary metabolism and stresses, that genes of the P450 family participate in the 20-E biosynthesis route, and that plants cultured under photoautotrophic conditions promote an upregulated Phantom gene and enhance the productivity of 20-E. The data will be used for future investigations of the 20-E synthesis pathway in P. glomerata while offering a better understanding of the metabolism of the species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00709-018-1322-1DOI Listing
May 2019

Genome-wide analysis of the MADS-box gene family in polyploid cotton (Gossypium hirsutum) and in its diploid parental species (Gossypium arboreum and Gossypium raimondii).

Plant Physiol Biochem 2018 Jun 20;127:169-184. Epub 2018 Mar 20.

Laboratório de Genética Molecular Vegetal, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), CEP 21941-617, Rio de Janeiro, RJ, Brazil. Electronic address:

The MADS-box gene family encodes transcription factors that share a highly conserved domain known to bind to DNA. Members of this family control various processes of development in plants, from root formation to fruit ripening. In this work, a survey of diploid (Gossypium raimondii and Gossypium arboreum) and tetraploid (Gossypium hirsutum) cotton genomes found a total of 147, 133 and 207 MADS-box genes, respectively, distributed in the MIKC, Mα, Mβ, Mγ, and Mδ subclades. A comparative phylogenetic analysis among cotton species, Arabidopsis, poplar and grapevine MADS-box homologous genes allowed us to evaluate the evolution of each MADS-box lineage in cotton plants and identify sequences within well-established subfamilies. Chromosomal localization and phylogenetic analysis revealed that G. raimondii and G. arboreum showed a conserved evolution of the MIKC subclade and a distinct pattern of duplication events in the Mα, Mγ and Mδ subclades. Additionally, G. hirsutum showed a combination of its parental subgenomes followed by a distinct evolutionary history including gene gain and loss in each subclade. qPCR analysis revealed the expression patterns of putative homologs in the AP1, AP3, AGL6, SEP4, AGL15, AG, AGL17, TM8, SVP, SOC and TT16 subfamilies of G. hirsutum. The identification of putative cotton orthologs is discussed in the light of evolution and gene expression data from other plants. This analysis of the MADS-box genes in Gossypium species opens an avenue to understanding the origin and evolution of each gene subfamily within diploid and polyploid species and paves the way for functional studies in cotton species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2018.03.019DOI Listing
June 2018

A peptidogalactomannan isolated from Cladosporium herbarum induces defense-related genes in BY-2 tobacco cells.

Plant Physiol Biochem 2018 May 2;126:206-216. Epub 2018 Mar 2.

Laboratório de Química Biológica de Microorganismos, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, CCS 21941599, Rio de Janeiro, Brazil. Electronic address:

Cladosporium herbarum is a plant pathogen associated with passion fruit scab and mild diseases in pea and soybean. In this study, a peptidogalactomannan (pGM) of C. herbarum mycelium was isolated and structurally characterized, and its role in plant-fungus interactions was evaluated. C. herbarum pGM is composed of carbohydrates (76%) and contains mannose, galactose and glucose as its main monosaccharides (molar ratio, 52:36:12). Methylation and C-nuclear magnetic resonance (C-NMR) spectroscopy analysis have shown the presence of a main chain containing (1 → 6)-linked α-D-Manp residues, and β-D-Galf residues are present as (1 → 5)-interlinked side chains. β-Galactofuranose containing similar structures were characterized by our group in A. fumigatus, A. versicolor, A. flavus and C. resinae. Tobacco BY-2 cells were used as a model system to address the question of the role of C. herbarum pGM in cell viability and induction of the expression of plant defense-related genes. Native and partially acid hydrolyzed pGMs (lacking galactofuranosyl side-chain residues) were incubated with BY-2 cell suspensions at different concentrations. Cell viability drastically decreased after exposure to more than 400 μg ml pGM; however no cell viability effect was observed after exposure to a partially acid hydrolyzed pGM. BY-2 cell contact with pGM strongly induce the expression of plant defense-related genes, such as phenylalanine ammonia lyase (PAL) and lipoxygenase (LOX), as well as the pathogen-related PR-1a, PR-2 and PR-3 genes, suggesting that pGM activates defense responses in tobacco cells. Interestingly, contact with partially hydrolyzed pGM also induced defense-related gene expression at earlier times than native pGM. These results show that the side chains of the (1 → 5)-linked β-D-galactofuranosyl units from pGM play an important role in the first line fungus-plant interactions mediating plant responses against C. herbarum. In addition, it was observed that pGM and/or C. herbarum conidia are able to induced HR when in contact with tobacco leaves and in vitro plantlets roots, producing necrotic lesions and peroxidase and NO burst, respectively.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2018.02.023DOI Listing
May 2018

microRNAs as reference genes for quantitative PCR in cotton.

PLoS One 2017 17;12(4):e0174722. Epub 2017 Apr 17.

Lab. Virologia Molecular Vegetal, Depto. Virologia, IMPPG, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brasil.

Cotton (Gossypium hirsutum) is the most important non-food plant in the world. Studies concerning the fiber quality and plant fitness of cotton at molecular level depend on high sensitive and reproducible gene-expression assays. However, only a few reports have described genes suitable for normalizing gene expression data. In this study, we report for the first time that microRNAs (miRNAs) are reliable reference genes (RGs) for cotton gene expression normalization in quantitative real-time reverse transcription (RT)-PCR. The stability of cotton miRNAs was assayed in root, stem, leaf and flower samples from three different cultivars [FiberMax (FM966), Delta Opal (DO) and Cedro] and under conditions of biotic stress caused by infection with Cotton leafroll dwarf virus (CLRDV). The stability of mRNAs already described as reference genes in cotton was also assessed. The geNorm, NormFinder, BestKeeper and ΔCt algorithms were used to select the best reference genes. In 8 of the 12 sets tested, miRNAs (miR172, 168 and 390) were found to be the best RGs. To validate the best selected RGs, miR159, miR164, miR2118, miR2910, miR3476, GhDCL2 and GhDCL4 expression levels were evaluated under biotic stress conditions, and miR164 and a putative myo-inositol oxigenase gene (GhMIOX) were assessed in leaves and flowers. The RGs selected in this work proved to be excellent reference genes in the two cases studied. Our results support the use of miRNAs as reference genes for miRNA and protein-coding genes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174722PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5393557PMC
May 2017

Plant arginyltransferases (ATEs).

Genet Mol Biol 2017 13;40(1 suppl 1):253-260. Epub 2017 Feb 13.

Laboratório de Virologia Molecular Vegetal, Departamento de Virologia IMPPG, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.

Regulation of protein stability and/or degradation of misfolded and damaged proteins are essential cellular processes. A part of this regulation is mediated by the so-called N-end rule proteolytic pathway, which, in concert with the ubiquitin proteasome system (UPS), drives protein degradation depending on the N-terminal amino acid sequence. One important enzyme involved in this process is arginyl-t-RNA transferase, known as ATE. This enzyme acts post-translationally by introducing an arginine residue at the N-terminus of specific protein targets to signal degradation via the UPS. However, the function of ATEs has only recently begun to be revealed. Nonetheless, the few studies to date investigating ATE activity in plants points to the great importance of the ATE/N-end rule pathway in regulating plant signaling. Plant development, seed germination, leaf morphology and responses to gas signaling in plants are among the processes affected by the ATE/N-end rule pathway. In this review, we present some of the known biological functions of plant ATE proteins, highlighting the need for more in-depth studies on this intriguing pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1590/1678-4685-GMB-2016-0084DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5452128PMC
February 2017

Exploring glycoside hydrolases and accessory proteins from wood decay fungi to enhance sugarcane bagasse saccharification.

Biotechnol Biofuels 2016 23;9:110. Epub 2016 May 23.

Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP 12602-810 Brazil.

Background: Glycoside hydrolases (GHs) and accessory proteins are key components for efficient and cost-effective enzymatic hydrolysis of polysaccharides in modern, biochemically based biorefineries. Currently, commercialized GHs and accessory proteins are produced by ascomycetes. However, the role of wood decay basidiomycetes proteins in biomass saccharification has not been extensively pursued. Wood decay fungi degrade polysaccharides in highly lignified tissues in natural environments, and are a promising enzyme source for improving enzymatic cocktails that are designed for in vitro lignocellulose conversion.

Results: GHs and accessory proteins were produced by representative brown- and white-rot fungi, Laetiporus sulphureus and Pleurotus ostreatus, respectively. Concentrated protein extracts were then used to amend commercial enzymatic cocktails for saccharification of alkaline-sulfite pretreated sugarcane bagasse. The main enzymatic activities found in the wood decay fungal protein extracts were attributed to endoglucanases, xylanases and β-glucosidases. Cellobiohydrolase (CBH) activities in the L. sulphureus and P. ostreatus extracts were low and nonexistent, respectively. The initial glucan conversion rates were boosted when the wood decay fungal proteins were used to replace half of the enzymes from the commercial cocktails. L. sulphureus proteins increased the glucan conversion levels, with values above those observed for the full load of commercial enzymes. Wood decay fungal proteins also enhanced the xylan conversion efficiency due to their high xylanase activities. Proteomic studies revealed 104 and 45 different proteins in the P. ostreatus and L. sulphureus extracts, respectively. The enhancement of the saccharification of alkaline-pretreated substrates by the modified enzymatic cocktails was attributed to the following protein families: GH5- and GH45-endoglucanases, GH3-β-glucosidases, and GH10-xylanases.

Conclusions: The extracellular proteins produced by wood decay fungi provide useful tools to improve commercial enzyme cocktails that are currently used for the saccharification of alkaline-pretreated lignocellulosic substrates. The relevant proteins encompass multiple glycoside hydrolase families, including the GH5- and GH45-endoglucanases, GH3-β-glucosidases, and GH10-xylanases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13068-016-0525-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877993PMC
May 2016

Complete genome sequences of two new virus isolates associated with cotton blue disease resistance breaking in Brazil.

Arch Virol 2015 May 14;160(5):1371-4. Epub 2015 Mar 14.

Depto. Virologia, Lab. Virologia Molecular Vegetal, IMPPG, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brasil.

Since 2006, Brazilian cotton (Gossypium hirsutum) crops planted with cultivars that are resistant to cotton blue disease have developed a new disease termed "atypical" cotton blue disease or atypical vein mosaic disease. Here, we describe the complete genomes of two virus isolates associated with this disease. The new virus isolates, called CLRDV-Acr3 and CLRDV-IMA2, were found to have a high degree of nucleotide and amino acid sequence similarity to previously described isolates of cotton leafroll dwarf virus, the causal agent of cotton blue disease. However, their P0 proteins were 86.1 % identical. These results show that this new disease is caused by a new CLRDV genotype that seems to have acquired the ability to overcome cotton blue disease resistance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00705-015-2380-8DOI Listing
May 2015

The floral transcriptome of Eucalyptus grandis.

New Phytol 2015 Jun 29;206(4):1406-22. Epub 2014 Oct 29.

Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA.

As a step toward functional annotation of genes required for floral initiation and development within the Eucalyptus genome, we used short read sequencing to analyze transcriptomes of floral buds from early and late developmental stages, and compared these with transcriptomes of diverse vegetative tissues, including leaves, roots, and stems. A subset of 4807 genes (13% of protein-coding genes) were differentially expressed between floral buds of either stage and vegetative tissues. A similar proportion of genes were differentially expressed among all tissues. A total of 479 genes were differentially expressed between early and late stages of floral development. Gene function enrichment identified 158 gene ontology classes that were overrepresented in floral tissues, including 'pollen development' and 'aromatic compound biosynthetic process'. At least 40 floral-dominant genes lacked functional annotations and thus may be novel floral transcripts. We analyzed several genes and gene families in depth, including 49 putative biomarkers of floral development, the MADS-box transcription factors, 'S-domain'-receptor-like kinases, and selected gene family members with phosphatidylethanolamine-binding protein domains. Expanded MADS-box gene subfamilies in Eucalyptus grandis included SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), SEPALLATA (SEP) and SHORT VEGETATIVE PHASE (SVP) Arabidopsis thaliana homologs. These data provide a rich resource for functional and evolutionary analysis of genes controlling eucalypt floral development, and new tools for breeding and biotechnology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.13077DOI Listing
June 2015

The genome of Eucalyptus grandis.

Nature 2014 Jun 11;510(7505):356-62. Epub 2014 Jun 11.

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.

Eucalypts are the world's most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature13308DOI Listing
June 2014

Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres.

Nature 2012 Dec;492(7429):423-7

Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602, USA.

Polyploidy often confers emergent properties, such as the higher fibre productivity and quality of tetraploid cottons than diploid cottons bred for the same environments. Here we show that an abrupt five- to sixfold ploidy increase approximately 60 million years (Myr) ago, and allopolyploidy reuniting divergent Gossypium genomes approximately 1-2 Myr ago, conferred about 30-36-fold duplication of ancestral angiosperm (flowering plant) genes in elite cottons (Gossypium hirsutum and Gossypium barbadense), genetic complexity equalled only by Brassica among sequenced angiosperms. Nascent fibre evolution, before allopolyploidy, is elucidated by comparison of spinnable-fibred Gossypium herbaceum A and non-spinnable Gossypium longicalyx F genomes to one another and the outgroup D genome of non-spinnable Gossypium raimondii. The sequence of a G. hirsutum A(t)D(t) (in which 't' indicates tetraploid) cultivar reveals many non-reciprocal DNA exchanges between subgenomes that may have contributed to phenotypic innovation and/or other emergent properties such as ecological adaptation by polyploids. Most DNA-level novelty in G. hirsutum recombines alleles from the D-genome progenitor native to its New World habitat and the Old World A-genome progenitor in which spinnable fibre evolved. Coordinated expression changes in proximal groups of functionally distinct genes, including a nuclear mitochondrial DNA block, may account for clusters of cotton-fibre quantitative trait loci affecting diverse traits. Opportunities abound for dissecting emergent properties of other polyploids, particularly angiosperms, by comparison to diploid progenitors and outgroups.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature11798DOI Listing
December 2012

Global alteration of microRNAs and transposon-derived small RNAs in cotton (Gossypium hirsutum) during Cotton leafroll dwarf polerovirus (CLRDV) infection.

Plant Mol Biol 2012 Nov 18;80(4-5):443-60. Epub 2012 Sep 18.

Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Small RNAs (sRNAs) are a class of non-coding RNAs ranging from 20- to 40-nucleotides (nts) that are present in most eukaryotic organisms. In plants, sRNAs are involved in the regulation of development, the maintenance of genome stability and the antiviral response. Viruses, however, can interfere with and exploit the silencing-based regulatory networks, causing the deregulation of sRNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs). To understand the impact of viral infection on the plant sRNA pathway, we deep sequenced the sRNAs in cotton leaves infected with Cotton leafroll dwarf virus (CLRDV), which is a member of the economically important virus family Luteoviridae. A total of 60 putative conserved cotton miRNAs were identified, including 19 new miRNA families that had not been previously described in cotton. Some of these miRNAs were clearly misregulated during viral infection, and their possible role in symptom development and disease progression is discussed. Furthermore, we found that the 24-nt heterochromatin-associated siRNAs were quantitatively and qualitatively altered in the infected plant, leading to the reactivation of at least one cotton transposable element. This is the first study to explore the global alterations of sRNAs in virus-infected cotton plants. Our results indicate that some CLRDV-induced symptoms may be correlated with the deregulation of miRNA and/or epigenetic networks.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-012-9959-1DOI Listing
November 2012

Reproductive Meristem22 is a unique marker for the early stages of stamen development.

Int J Dev Biol 2011 ;55(6):657-64

Laboratório de Genética Molecular Vegetal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Stamens undergo a very elaborate development program that gives rise not only to many specific tissue types, but also to the male gametes. The specification of stamen identity is coordinated by a group of homeotic genes such as APETALA3 (AP3) and PISTILLATA (PI), AGAMOUS (AG) and SEPALLATA (SEP1-4) genes. Genome-wide transcriptomic comparisons between floral buds of wild-type and ap3 mutants led to the identification of the REM22 gene, which is expressed in the early stages of stamen development. This gene is member of the plant-specific B3 DNA-binding superfamily. In this work, we dissect the spatio-temporal expression pattern of REM22 during the early stages of stamen development. To this end, both in situ hybridization analyses as well as in vivo fluorescence strategies were employed. At stage 4 of flower development, REM22 is expressed exclusively in those undifferentiated cells of the floral meristem that will give rise to the stamen primordia. At stage 5, REM22 expression is restricted to the epidermal and the subepidermal layers of anther primordia. Later, this expression is confined to the middle layer and the differentiating tapetal cells. After stage 10 when all the tissues of the anther have differentiated, REM22 expression is no longer detectable. Furthermore, we examined the pREM22::GUS-GFP marker line in an inducible system where the ectopic AG function is used to promote microsporogenesis. The data support the idea that REM22 expression is a useful marker to study the early stages of stamen development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1387/ijdb.113340erDOI Listing
March 2012

Profile of small interfering RNAs from cotton plants infected with the polerovirus Cotton leafroll dwarf virus.

BMC Mol Biol 2011 Aug 24;12:40. Epub 2011 Aug 24.

Laboratório de Virologia Molecular Vegetal, Depto, Virologia, IMPPG, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.

Background: In response to infection, viral genomes are processed by Dicer-like (DCL) ribonuclease proteins into viral small RNAs (vsRNAs) of discrete sizes. vsRNAs are then used as guides for silencing the viral genome. The profile of vsRNAs produced during the infection process has been extensively studied for some groups of viruses. However, nothing is known about the vsRNAs produced during infections of members of the economically important family Luteoviridae, a group of phloem-restricted viruses. Here, we report the characterization of a population of vsRNAs from cotton plants infected with Cotton leafroll dwarf virus (CLRDV), a member of the genus Polerovirus, family Luteoviridae.

Results: Deep sequencing of small RNAs (sRNAs) from leaves of CLRDV-infected cotton plants revealed that the vsRNAs were 21- to 24-nucleotides (nt) long and that their sequences matched the viral genome, with higher frequencies of matches in the 3- region. There were equivalent amounts of sense and antisense vsRNAs, and the 22-nt class of small RNAs was predominant. During infection, cotton Dcl transcripts appeared to be up-regulated, while Dcl2 appeared to be down-regulated.

Conclusions: This is the first report on the profile of sRNAs in a plant infected with a virus from the family Luteoviridae. Our sequence data strongly suggest that virus-derived double-stranded RNA functions as one of the main precursors of vsRNAs. Judging by the profiled size classes, all cotton DCLs might be working to silence the virus. The possible causes for the unexpectedly high accumulation of 22-nt vsRNAs are discussed. CLRDV is the causal agent of Cotton blue disease, which occurs worldwide. Our results are an important contribution for understanding the molecular mechanisms involved in this and related diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2199-12-40DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3189115PMC
August 2011

Evolution of the B3 DNA binding superfamily: new insights into REM family gene diversification.

PLoS One 2009 Jun 8;4(6):e5791. Epub 2009 Jun 8.

Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

Background: The B3 DNA binding domain includes five families: auxin response factor (ARF), abscisic acid-insensitive3 (ABI3), high level expression of sugar inducible (HSI), related to ABI3/VP1 (RAV) and reproductive meristem (REM). The release of the complete genomes of the angiosperm eudicots Arabidopsis thaliana and Populus trichocarpa, the monocot Orysa sativa, the bryophyte Physcomitrella patens,the green algae Chlamydomonas reinhardtii and Volvox carteri and the red algae Cyanidioschyzon melorae provided an exceptional opportunity to study the evolution of this superfamily.

Methodology: In order to better understand the origin and the diversification of B3 domains in plants, we combined comparative phylogenetic analysis with exon/intron structure and duplication events. In addition, we investigated the conservation and divergence of the B3 domain during the origin and evolution of each family.

Conclusions: Our data indicate that showed that the B3 containing genes have undergone extensive duplication events, and that the REM family B3 domain has a highly diverged DNA binding. Our results also indicate that the founding member of the B3 gene family is likely to be similar to the ABI3/HSI genes found in C. reinhardtii and V. carteri. Among the B3 families, ABI3, HSI, RAV and ARF are most structurally conserved, whereas the REM family has experienced a rapid divergence. These results are discussed in light of their functional and evolutionary roles in plant development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005791PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688026PMC
June 2009
-->