Publications by authors named "Elena Zerkalenkova"

12 Publications

  • Page 1 of 1

Blinatumomab following haematopoietic stem cell transplantation - a novel approach for the treatment of acute lymphoblastic leukaemia in infants.

Br J Haematol 2021 Apr 11. Epub 2021 Apr 11.

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation.

Blinatumomab with subsequent haematopoietic stem cell transplantation was applied in 13 infants with acute lymphoblastic leukaemia (ALL). Eight patients were treated in first remission due to slow clearance of minimal residual disease (MRD); one for MRD-reappearance after long MRD negativity, one for primary refractory disease and three during relapse treatment. In slow MRD responders, complete MRD response was achieved prior to transplantation, with an 18-month event-free survival of 75%. In contrast, only one of five patients with relapsed/refractory ALL is still in complete remission. These data provide a basis for future studies of immunotherapy in very high-risk infant ALL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/bjh.17466DOI Listing
April 2021

Relative expansion of CD19-negative very-early normal B-cell precursors in children with acute lymphoblastic leukaemia after CD19 targeting by blinatumomab and CAR-T cell therapy: implications for flow cytometric detection of minimal residual disease.

Br J Haematol 2021 May 14;193(3):602-612. Epub 2021 Mar 14.

National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation.

CD19-directed treatment in B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) frequently leads to the downmodulation of targeted antigens. As multicolour flow cytometry (MFC) application for minimal/measurable residual disease (MRD) assessment in BCP-ALL is based on B-cell compartment study, CD19 loss could hamper MFC-MRD monitoring after blinatumomab or chimeric antigen receptor T-cell (CAR-T) therapy. The use of other antigens (CD22, CD10, CD79a, etc.) as B-lineage gating markers allows the identification of CD19-negative leukaemia, but it could also lead to misidentification of normal very-early CD19-negative BCPs as tumour blasts. In the current study, we summarized the results of the investigation of CD19-negative normal BCPs in 106 children with BCP-ALL who underwent CD19 targeting (blinatumomab, n = 64; CAR-T, n = 25; or both, n = 17). It was found that normal CD19-negative BCPs could be found in bone marrow after CD19-directed treatment more frequently than in healthy donors and children with BCP-ALL during chemotherapy or after stem cell transplantation. Analysis of the antigen expression profile revealed that normal CD19-negative BCPs could be mixed up with residual leukaemic blasts, even in bioinformatic analyses of MFC data. The results of our study should help to investigate MFC-MRD more accurately in patients who have undergone CD19-targeted therapy, even in cases with normal CD19-negative BCP expansion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/bjh.17382DOI Listing
May 2021

Immunophenotypic changes of leukemic blasts in children with relapsed/refractory B-cell precursor acute lymphoblastic leukemia, who have been treated with Blinatumomab.

Haematologica 2020 12 30;Online ahead of print. Epub 2020 Dec 30.

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology; 1 Samory Mashela St., Moscow 117998, Russian Federation.

Not available.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3324/haematol.2019.241596DOI Listing
December 2020

Additional flow cytometric studies for differential diagnosis between Burkitt lymphoma/leukemia and B-cell precursor acute lymphoblastic leukemia.

Leuk Res 2021 01 8;100:106491. Epub 2020 Dec 8.

National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela St., 117998, Moscow, Russia. Electronic address:

The differentiation between Burkitt lymphoma/leukemia (BL) and B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is sometimes complicated. Laboratory findings that favor BL (e.g., surface expression of μ heavy chain and/or one of the light chains of immunoglobulin, FAB L3 morphology of blasts, MYC gene rearrangements) are not always present simultaneously. Our previous work demonstrated that BL differed from Ig(+) BCP-ALL by expression of Ig and other surface markers. In the current study, we have evaluated additional flow cytometric markers for reliable differentiation between BL and BCP-ALL. Among three studied surface antigens (CD44, CD38, CD58), only CD58 demonstrated significantly higher expression in BL as compared to BCP-ALL. Moreover, BL cases were associated with an increased level of Ki-67 and a higher percentage of cells in the S-phase of cell cycle. These two features reflect an aggressive proliferative potential of BL. Thus, when BL is suspected and results of surface Ig evaluation are controversial, the flow cytometric analysis of CD58, Ki-67 and cell cycle could assist in the differential diagnosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.leukres.2020.106491DOI Listing
January 2021

Cytogenetic and molecular genetic methods for chromosomal translocations detection with reference to the gene.

Crit Rev Clin Lab Sci 2021 May 18;58(3):180-206. Epub 2020 Nov 18.

Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.

Acute leukemias (ALs) are often associated with chromosomal translocations, in particular, gene rearrangements. Identification or confirmation of these translocations is carried out by a number of genetic and molecular methods, some of which are routinely used in clinical practice, while others are primarily used for research purposes. In the clinic, these methods serve to clarify diagnoses and monitor the course of disease and therapy. On the other hand, the identification of new translocations and the confirmation of known translocations are of key importance in the study of disease mechanisms and further molecular classification. There are multiple methods for the detection of rearrangements that differ in their principle of operation, the type of problem being solved, and the cost-result ratio. This review is intended to help researchers and clinicians studying AL and related chromosomal translocations to navigate this variety of methods. All methods considered in the review are grouped by their principle of action and include karyotyping, fluorescence in situ hybridization (FISH) with probes for whole chromosomes or individual loci, PCR and reverse transcription-based methods, and high-throughput sequencing. Another characteristic of the described methods is the type of problem being solved. This can be the discovery of new rearrangements, the determination of unknown partner genes participating in the rearrangement, or the confirmation of the proposed rearrangement between the two genes. We consider the specifics of the application, the basic principle of each method, and its pros and cons. To illustrate the application, examples of studying the rearrangements of the gene, one of the genes that are often rearranged in AL, are mentioned.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408363.2020.1844135DOI Listing
May 2021

Quantification of NG2-positivity for the precise prediction of KMT2A gene rearrangements in childhood acute leukemia.

Genes Chromosomes Cancer 2021 Feb 20;60(2):88-99. Epub 2020 Nov 20.

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.

It has long been known that there is a link between neuron glial antigen 2 (NG2) surface expression and KMT2A gene rearrangements in acute leukemia (AL). However, the exact levels of NG2 positivity that predict the presence of KMT2A rearrangement are not known. The current study focuses on a cohort of 505 pediatric AL patients who showed any level of positive NG2 expression (greater than 1% of cells) for whom comprehensive genetic data were available. NG2 expression was measured as either the percentage of positive cells or the number of molecules on the cell surface. KMT2A gene rearrangements were identified by FISH. The fusion partner was detected with RT-PCR, LDI-PCR or anchored multiplex PCR followed by high-throughput sequencing. KMT2A-positive samples comprised a substantial proportion of the NG2-positive cohort (180 of 505, 36%), with a total of 19 different types of translocation. Despite its occurrence in other AL genetic subgroups, NG2 expression was significantly increased in AL patients with KMT2A rearrangements in terms of both the cell percentage and number of molecules per cell. The threshold levels (TL) for NG2-positivity were established by ROC analysis of the whole cohort and separately for children less than 1 years old and older with lymphoblastic (ALL) and myeloid (AML) leukemia. The lowest TL was defined in infants with ALL (7%), while in older children, the threshold was higher (12%). In AML patients, the situation was reversed, with 28% NG2-positivity in infants and 14% in patients >1 year old. The defined TLs resulted in improved diagnostic performance compared to the conventional thresholds of 10% and 20% for all patient groups.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/gcc.22915DOI Listing
February 2021

Heterogeneity of childhood acute leukemia with mature B-cell immunophenotype.

J Cancer Res Clin Oncol 2019 Nov 28;145(11):2803-2811. Epub 2019 Aug 28.

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela St., GSP-7, Moscow, 117997, Russia.

Background: Flow cytometry (FCM) plays a crucial role in the differential diagnosis of Burkitt lymphoma/leukemia (BL) and B-cell precursor acute lymphoblastic leukemia (BCP-ALL). The presence of surface IgM (sIgM) alone or with light chain restriction indicates a mature blast phenotype (BIV by EGIL) and is usually observed in BL. However, sIgM expression could also be detected in transitional BCP-ALL cases. These similarities in immunophenotype and ambiguous correspondence with other laboratory findings may challenge the correct BL diagnostics.

Methods: We retrospectively reviewed the available data from immunophenotypic, morphological, cytogenetic, and molecular genetic studies of 146 children (85 boys and 61 girls) with a median age of 10 years (range 0-18 years) who were diagnosed with BL and BCP-ALL. The blasts' immunophenotype was studied by multicolor FCM. The conventional cytogenetic analysis included G-banded karyotyping and fluorescence in situ hybridization (FISH).

Results: In 54 children classified as BIV-ALL according to the EGIL, it was demonstrated that sIgM in a minority of cases can be associated with various types of BCP-ALL. Analysis of the antigen expression profile of 105 patients with verified BL (n = 21) and BCP-ALL (n = 84) showed significant differences in BL and the sIgM(+) vs BCP-ALL immunophenotype. Thus, even in cases of ambiguous sIgM expression, these two diseases could be reliably discriminated by complex immunophenotyping. Moreover, 10 patients (7 boys and 3 girls) with BL leukemic cells did not express sIgM, and they were diagnosed with BL on the basis of other laboratory and clinical signs.

Conclusions: In conclusion, our study shows that BIV subtype is heterogeneous group of leukemia including not only the BL, but also BCP-ALL. In ambiguous cases, only a combination of multiple immunophenotypic, cytomorphologic, and genetic diagnostic technologies can allow the precise discrimination of BL and BCP-ALL and selection of the appropriate treatment scheme.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00432-019-03010-1DOI Listing
November 2019

αβ T Cell-Depleted Haploidentical Hematopoietic Stem Cell Transplantation without Antithymocyte Globulin in Children with Chemorefractory Acute Myelogenous Leukemia.

Biol Blood Marrow Transplant 2019 05 21;25(5):e179-e182. Epub 2019 Jan 21.

Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia. Electronic address:

We evaluated the outcome of αβ T cell-depleted haploidentical hematopoietic stem cell transplantation (HSCT) in a cohort of children with chemorefractory acute myelogenous leukemia (AML). Twenty-two patients with either primary refractory (n = 10) or relapsed refractory (n = 12) AML in active disease status received a transplant from haploidentical donors. The preparative regimen included cytoreduction with fludarabine and cytarabine and subsequent myeloablative conditioning with treosulfan and thiotepa. Antithymocyte globulin was substituted with tocilizumab in all patients and also with abatacept in 10 patients. Grafts were peripheral blood stem cells engineered by αβ T cell and CD19 depletion. Post-transplantation prophylactic therapy included infusion of donor lymphocytes, composed of a CD45RA-depleted fraction with or without a hypomethylating agent. Complete remission was achieved in 21 patients (95%). The cumulative incidence of grade II-IV acute graft-versus-host disease (GVHD) was 18%, and the cumulative incidence of chronic GVHD was 23%. At 2 years, transplantation-related mortality was 9%, relapse rate was 42%, event-free survival was 49%, and overall survival was 53%. Our data suggest that αβ T cell-depleted haploidentical HSCT provides a reasonable chance of long-term survival in a cohort of children with chemorefractory AML and creates a solid basis for further improvement.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbmt.2019.01.023DOI Listing
May 2019

Acute myeloid leukemia with t(10;11)(p11-12;q23.3): Results of Russian Pediatric AML registration study.

Int J Lab Hematol 2019 Apr 9;41(2):287-292. Epub 2019 Jan 9.

Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.

Introduction: Translocations involving the KMT2A gene (also known as MLL) are frequently diagnosed in pediatric acute leukemia cases with either lymphoblastic or myeloid origin. KMT2A is translocated to multiple partner genes, including MLLT10/AF10 localizing at chromosomal band 10p12. KMT2A-MLLT10 is one of the common chimeric genes diagnosed in acute leukemia with KMT2A rearrangement (8%), especially in acute myeloid leukemia (AML; 18%). MLLT10 is localized in very close proximity to two other KMT2A partner genes at 10p11-12-NEBL and ABI1, so they could not be distinguished by conventional cytogenetics.

Methods: In this work, we present a cohort of 28 patients enrolled into Russian Pediatric AML registration study carrying rearrangements between chromosomal regions 11q23.3 and 10p11-12. G-banding, FISH, reverse transcription PCR, and long-distance inverse PCR were used to characterize the KMT2A gene rearrangements in these patients.

Results: We demonstrate that 25 patients harbor the KMT2A-MLLT10 rearrangement, while three patients show the rare KMT2A rearrangements (2× KMT2A-NEBL; 1× KMT2A-ABI1).

Conclusions: Therefore, the combination of cytogenetic and molecular genetic methods is of high importance in diagnosing cases with t(10;11)(p11-12;q23.3).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ijlh.12969DOI Listing
April 2019

A case of pediatric acute myeloid leukemia with t(11;16)(q23;q24) leading to a novel KMT2A-USP10 fusion gene.

Genes Chromosomes Cancer 2018 10 14;57(10):522-524. Epub 2018 Aug 14.

Laboratory of Cytogenetics and Molecular Genetics, Dmitry Rogachev Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia.

We present a leukemia case that exhibits a chromosomal translocation t(11;16)(q23;q23), which results in the expression of a novel KMT2A fusion gene. This novel fusion, KMT2A-USP10, was found in a relapse of acute myeloid leukaemia M5a. USP10 belongs to a protein family that deubiquitinates a distinct set of target proteins, and thus, increases the steady state protein levels of its target subproteome. One of the USP10 targets is TP53. Wildtype TP53 is usually rescued from proteasomal degradation by USP10. As most KMT2A leukemias display wildtype p53 alleles, one might argue that the disruption of an USP10 allele can be classified as a pro-oncogenic event.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/gcc.22646DOI Listing
October 2018

Clinical significance of cytogenetic changes in childhood T-cell acute lymphoblastic leukemia: results of the multicenter group Moscow-Berlin (MB).

Leuk Lymphoma 2019 02 1;60(2):426-432. Epub 2018 Aug 1.

i Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Charité CVK, Universitätsmedizin Berlin , Berlin , Germany.

The prognostic significance of genetic lesions in T-cell ALL still needs to be elucidated. Karyotyping and FISH were performed in samples from 120 patients with T-cell ALL registered in the trial Moscow-Berlin 2008. Most frequent rearrangements were TLX3 (N = 29; 24%) and TAL1 (N = 18; 15%), followed by KMT2A (N = 6; 5%), TLX1 (N = 5; 4.2%), and 11p13-15 (N = 5; 4.2%). In 16.7% of patients, the karyotype was normal, and in 30.8% 'other' aberrations were seen. Patients with a normal karyotype, TAL1, or KMT2A rearrangements had the most favorable outcome (probability of event free survival (pEFS): 82% ± 6%), while prognosis for patients with TLX3 and TLX1 rearrangements and 'other' aberrations was less favorable (pEFS: 62% ± 6%). Worst outcome was observed for five patients with 11p rearrangements (pEFS: 20% ± 18%). In summary, three subgroups of patients with T-cell ALL with significantly different outcomes could be defined by cytogenetic profiling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/10428194.2018.1485904DOI Listing
February 2019

Molecular characteristic of acute leukemias with t(16;21)/FUS-ERG.

Ann Hematol 2018 Jun 9;97(6):977-988. Epub 2018 Feb 9.

Dmitry Rogachev Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Samora Mashela str., 1, Moscow, 117997, Russia.

T(16;21)(p11;q22)/FUS-ERG is a rare but recurrent translocation in acute leukemias and in some types of solid tumors. Due to multiple types of FUS-ERG transcripts, PCR-based minimal residual disease detection is impeded. In this study, we evaluated a cohort of pediatric patients with t(16;21)(p11;q22)/FUS-ERG and revealed fusion gene breakpoints. We implemented next-generation sequencing (NGS) on long PCR amplicons for the detection of fusion genes with unknown partners or DNA breakpoints. That allowed us to describe different fusion variants of FUS/ERG in different patients and to detect MRD on both RNA and DNA levels. We also found several accompanying mutations in epigenetic regulators (DNMT3A, ASXL1, BCOR) by targeted NGS approach in AML cases. These mutations preceded full transformation by t(16;21)(p11;q22)/FUS-ERG and allowed us to trace clonal evolution on all steps of therapy. As a casual observation, the ASXL1 mutation was found in the unrelated donor hematopoietic cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00277-018-3267-zDOI Listing
June 2018