Publications by authors named "Elena Cartocci"

17 Publications

  • Page 1 of 1

NHBA is processed by kallikrein from human saliva.

PLoS One 2019 1;14(8):e0203234. Epub 2019 Aug 1.

GSK, Siena, Italy.

Neisserial Heparin Binding Antigen (NHBA) is a surface-exposed lipoprotein of Neisseria meningitidis and a component of the Bexsero vaccine. NHBA is characterized by the presence of a highly conserved Arg-rich region involved in binding to heparin and heparan sulphate proteoglycans present on the surface of host epithelial cells, suggesting a possible role of NHBA during N. meningitidis colonization. NHBA has been shown to be cleaved by the meningococcal protease NalP and by human lactoferrin (hLF), a host protease presents in different body fluids (saliva, breast milk and serum). Cleavage occurs upstream or downstream the Arg-rich region. Since the human nasopharynx is the only known reservoir of infection, we further investigated the susceptibility of NHBA to human proteases present in the saliva to assess whether proteolytic cleavage could happen during the initial steps of colonization. Here we show that human saliva proteolytically cleaves NHBA, and identified human kallikrein 1 (hK1), a serine protease, as responsible for this cleavage. Kallikrein-related peptidases (KLKs) have a distinct domain structure and exist as a family of 15 genes which are differentially expressed in many tissues and in the central nervous system. They are present in plasma, lymph, urine, saliva, pancreatic juices, and other body fluids where they catalyze the proteolysis of several human proteins. Here we report the characterization of NHBA cleavage by the tissue kallikrein, expressed in saliva and the identification of the cleavage site on NHBA both, as recombinant protein or as native protein, when expressed on live bacteria. Overall, these findings provide new insights on NHBA as target of host proteases, highlights thepotential role of NHBA in the Neisseria meningitidis nasopharyngeal colonization, and of kallikrein as a defensive agent against meningococcal infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0203234PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6675046PMC
March 2020

Neisseria Heparin Binding Antigen is targeted by the human alternative pathway C3-convertase.

PLoS One 2018 26;13(3):e0194662. Epub 2018 Mar 26.

GSK, Siena, Italy.

Neisserial Heparin Binding Antigen (NHBA) is a surface-exposed lipoprotein specific for Neisseria and constitutes one of the three main protein antigens of the Bexsero vaccine. Meningococcal and human proteases, cleave NHBA protein upstream or downstream of a conserved Arg-rich region, respectively. The cleavage results in the release of the C-terminal portion of the protein. The C-terminal fragment originating from the processing of meningococcal proteases, referred to as C2 fragment, exerts a toxic effect on endothelial cells altering the endothelial permeability. In this work, we reported that recombinant C2 fragment has no influence on the integrity of human airway epithelial cell monolayers, consistent with previous findings showing that Neisseria meningitidis traverses the epithelial barrier without disrupting the junctional structures. We showed that epithelial cells constantly secrete proteases responsible for a rapid processing of C2 fragment, generating a new fragment that does not contain the Arg-rich region, a putative docking domain reported to be essential for C2-mediated toxic effect. Moreover, we found that the C3-convertase of the alternative complement pathway is one of the proteases responsible for this processing. Overall, our data provide new insights on the cleavage of NHBA protein during meningococcal infection. NHBA cleavage may occur at different stages of the infection, and it likely has a different role depending on the environment the bacterium is interacting with.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194662PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5868813PMC
July 2018

Expression of factor H binding protein in meningococcal strains can vary at least 15-fold and is genetically determined.

Proc Natl Acad Sci U S A 2016 Mar 17;113(10):2714-9. Epub 2016 Feb 17.

GSK Vaccines, 53100 Siena, Italy

Factor H binding protein (fHbp) is a lipoprotein of Neisseria meningitidis important for the survival of the bacterium in human blood and a component of two recently licensed vaccines against serogroup B meningococcus (MenB). Based on 866 different amino acid sequences this protein is divided into three variants or two families. Quantification of the protein is done by immunoassays such as ELISA or FACS that are susceptible to the sequence variation and expression level of the protein. Here, selected reaction monitoring mass spectrometry was used for the absolute quantification of fHbp in a large panel of strains representative of the population diversity of MenB. The analysis revealed that the level of fHbp expression can vary at least 15-fold and that variant 1 strains express significantly more protein than variant 2 or variant 3 strains. The susceptibility to complement-mediated killing correlated with the amount of protein expressed by the different meningococcal strains and this could be predicted from the nucleotide sequence of the promoter region. Finally, the absolute quantification allowed the calculation of the number of fHbp molecules per cell and to propose a mechanistic model of the engagement of C1q, the recognition component of the complement cascade.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1521142113DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791009PMC
March 2016

Vaccine composition formulated with a novel TLR7-dependent adjuvant induces high and broad protection against Staphylococcus aureus.

Proc Natl Acad Sci U S A 2015 Mar 9;112(12):3680-5. Epub 2015 Mar 9.

Novartis Vaccines Research Center, 53100 Siena, Italy;

Both active and passive immunization strategies against Staphylococcus aureus have thus far failed to show efficacy in humans. With the attempt to develop an effective S. aureus vaccine, we selected five conserved antigens known to have different roles in S. aureus pathogenesis. They include the secreted factors α-hemolysin (Hla), ess extracellular A (EsxA), and ess extracellular B (EsxB) and the two surface proteins ferric hydroxamate uptake D2 and conserved staphylococcal antigen 1A. The combined vaccine antigens formulated with aluminum hydroxide induced antibodies with opsonophagocytic and functional activities and provided consistent protection in four mouse models when challenged with a panel of epidemiologically relevant S. aureus strains. The importance of antibodies in protection was demonstrated by passive transfer experiments. Furthermore, when formulated with a toll-like receptor 7-dependent (TLR7) agonist recently designed and developed in our laboratories (SMIP.7-10) adsorbed to alum, the five antigens provided close to 100% protection against four different staphylococcal strains. The new formulation induced not only high antibody titers but also a Th1 skewed immune response as judged by antibody isotype and cytokine profiles. In addition, low frequencies of IL-17-secreting T cells were also observed. Altogether, our data demonstrate that the rational selection of mixtures of conserved antigens combined with Th1/Th17 adjuvants can lead to promising vaccine formulations against S. aureus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1424924112DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378396PMC
March 2015

Structure of the meningococcal vaccine antigen NadA and epitope mapping of a bactericidal antibody.

Proc Natl Acad Sci U S A 2014 Dec 17;111(48):17128-33. Epub 2014 Nov 17.

Novartis Vaccines, 53100 Siena, Italy; and.

Serogroup B Neisseria meningitidis (MenB) is a major cause of severe sepsis and invasive meningococcal disease, which is associated with 5-15% mortality and devastating long-term sequelae. Neisserial adhesin A (NadA), a trimeric autotransporter adhesin (TAA) that acts in adhesion to and invasion of host epithelial cells, is one of the three antigens discovered by genome mining that are part of the MenB vaccine that recently was approved by the European Medicines Agency. Here we present the crystal structure of NadA variant 5 at 2 Å resolution and transmission electron microscopy data for NadA variant 3 that is present in the vaccine. The two variants show similar overall topology with a novel TAA fold predominantly composed of trimeric coiled-coils with three protruding wing-like structures that create an unusual N-terminal head domain. Detailed mapping of the binding site of a bactericidal antibody by hydrogen/deuterium exchange MS shows that a protective conformational epitope is located in the head of NadA. These results provide information that is important for elucidating the biological function and vaccine efficacy of NadA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1419686111DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260552PMC
December 2014

Neisseria gonorrhoeae PIII has a role on NG1873 outer membrane localization and is involved in bacterial adhesion to human cervical and urethral epithelial cells.

BMC Microbiol 2013 Nov 9;13:251. Epub 2013 Nov 9.

Novartis Vaccines and Diagnostics, S,r,L, Via Fiorentina 1, Siena 53100, Italy.

Background: Protein PIII is one of the major outer membrane proteins of Neisseria gonorrhoeae, 95% identical to RmpM (reduction modifiable protein M) or class 4 protein of Neisseria meningitidis. RmpM is known to be a membrane protein associated by non-covalent bonds to the peptidoglycan layer and interacting with PorA/PorB porin complexes resulting in the stabilization of the bacterial membrane. The C-terminal domain of PIII (and RmpM) is highly homologous to members of the OmpA family, known to have a role in adhesion/invasion in many bacterial species. The contribution of PIII in the membrane architecture and its role in the interaction with epithelial cells has never been investigated.

Results: We generated a ΔpIII knock-out mutant strain and evaluated the effects of the loss of PIII expression on bacterial morphology and on outer membrane composition. Deletion of the pIII gene does not cause any alteration in bacterial morphology or sensitivity to detergents. Moreover, the expression profile of the main membrane proteins remains the same for the wild-type and knock-out strains, with the exception of the NG1873 which is not exported to the outer membrane and accumulates in the inner membrane in the ΔpIII knock-out mutant strain.We also show that purified PIII protein is able to bind human cervical and urethral cells and that the ΔpIII knock-out mutant strain has a lower ability to adhere to human cervical and urethral cells.

Conclusion: Here we demonstrated that the PIII protein does not play a key structural role in the membrane organization of gonococcus and does not induce major effects on the expression of the main outer membrane proteins. However, in the PIII knock-out strain, the NG1873 protein is not localized in the outer membrane as it is in the wild-type strain suggesting a possible interaction of PIII with NG1873. The evidence that PIII binds to human epithelial cells derived from the female and male genital tract highlights a possible role of PIII in the virulence of gonococcus and suggests that the structural homology to OmpA is conserved also at functional level.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2180-13-251DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226279PMC
November 2013

Crystal structure of c5321: a protective antigen present in uropathogenic Escherichia coli strains displaying an SLR fold.

BMC Struct Biol 2013 Oct 7;13:19. Epub 2013 Oct 7.

Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.

Background: Increasing rates of antimicrobial resistance among uropathogens led, among other efforts, to the application of subtractive reverse vaccinology for the identification of antigens present in extraintestinal pathogenic E. coli (ExPEC) strains but absent or variable in non-pathogenic strains, in a quest for a broadly protective Escherichia coli vaccine. The protein coded by locus c5321 from CFT073 E. coli was identified as one of nine potential vaccine candidates against ExPEC and was able to confer protection with an efficacy of 33% in a mouse model of sepsis. c5321 (known also as EsiB) lacks functional annotation and structurally belongs to the Sel1-like repeat (SLR) family. Herein, as part of the general characterization of this potential antigen, we have focused on its structural properties.

Results: We report the 1.74 Å-resolution crystal structure of c5321 from CFT073 E. coli determined by Se-Met SAD phasing. The structure is composed of 11 SLR units in a topological organisation that highly resembles that found in HcpC from Helicobacter pylori, with the main difference residing in how the super-helical fold is stabilised. The stabilising effect of disulfide bridges in HcpC is replaced in c5321 by a strengthening of the inter-repeat hydrophobic core. A metal-ion binding site, uncharacteristic of SLR proteins, is detected between SLR units 3 and 4 in the region of the inter-repeat hydrophobic core. Crystal contacts are observed between the C-terminal tail of one molecule and the C-terminal amphipathic groove of a neighbouring one, resembling interactions between ligand and proteins containing tetratricopeptide-like repeats.

Conclusions: The structure of antigen c5321 presents a mode of stabilization of the SLR fold different from that observed in close homologs of known structure. The location of the metal-ion binding site and the observed crystal contacts suggest a potential role in regulation of conformational flexibility and interaction with yet unidentified target proteins, respectively. These findings open new perspectives in both antigen design and for the identification of a functional role for this protective antigen.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1472-6807-13-19DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3851747PMC
October 2013

Defining a protective epitope on factor H binding protein, a key meningococcal virulence factor and vaccine antigen.

Proc Natl Acad Sci U S A 2013 Feb 8;110(9):3304-9. Epub 2013 Feb 8.

Research Center, Novartis Vaccines and Diagnostics srl, 53100 Siena, Italy.

Mapping of epitopes recognized by functional monoclonal antibodies (mAbs) is essential for understanding the nature of immune responses and designing improved vaccines, therapeutics, and diagnostics. In recent years, identification of B-cell epitopes targeted by neutralizing antibodies has facilitated the design of peptide-based vaccines against highly variable pathogens like HIV, respiratory syncytial virus, and Helicobacter pylori; however, none of these products has yet progressed into clinical stages. Linear epitopes identified by conventional mapping techniques only partially reflect the immunogenic properties of the epitope in its natural conformation, thus limiting the success of this approach. To investigate antigen-antibody interactions and assess the potential of the most common epitope mapping techniques, we generated a series of mAbs against factor H binding protein (fHbp), a key virulence factor and vaccine antigen of Neisseria meningitidis. The interaction of fHbp with the bactericidal mAb 12C1 was studied by various epitope mapping methods. Although a 12-residue epitope in the C terminus of fHbp was identified by both Peptide Scanning and Phage Display Library screening, other approaches, such as hydrogen/deuterium exchange mass spectrometry (MS) and X-ray crystallography, showed that mAb 12C1 occupies an area of ∼1,000 Å(2) on fHbp, including >20 fHbp residues distributed on both N- and C-terminal domains. Collectively, these data show that linear epitope mapping techniques provide useful but incomplete descriptions of B-cell epitopes, indicating that increased efforts to fully characterize antigen-antibody interfaces are required to understand and design effective immunogens.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1222845110DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587270PMC
February 2013

Targeted amino acid substitutions impair streptolysin O toxicity and group A Streptococcus virulence.

mBio 2013 Jan 8;4(1):e00387-12. Epub 2013 Jan 8.

Novartis Vaccines and Diagnostics, Siena, Italy.

Unlabelled: Streptolysin O is a potent pore-forming toxin produced by group A Streptococcus. The aims of the present study were to dissect the relative contributions of different structural domains of the protein to hemolytic activity, to obtain a detoxified form of streptolysin O amenable to human vaccine formulation, and to investigate the role of streptolysin O-specific antibodies in protection against group A Streptococcus infection. On the basis of in silico structural predictions, we introduced two amino acid substitutions, one in the proline-rich domain 1 and the other in the conserved undecapeptide loop in domain 4. The resulting streptolysin O derivative showed no toxicity, was highly impaired in binding to eukaryotic cells, and was unable to form organized oligomeric structures on the cell surface. However, it was fully capable of conferring consistent protection in a murine model of group A Streptococcus infection. When we engineered a streptococcal strain to express the double-mutated streptolysin O, a drastic reduction in virulence as well as a diminished capacity to kill immune cells recruited at the infection site was observed. Furthermore, when mice immunized with the toxoid were challenged with the wild-type and mutant strains, protection only against the wild-type strain, not against the strain expressing the double-mutated streptolysin O, was obtained. We conclude that protection occurs by antibody-mediated neutralization of active toxin.

Importance: We present a novel example of structural design of a vaccine antigen optimized for human vaccine use. Having previously demonstrated that immunization of mice with streptolysin O elicits a protective immune response against infection with group A Streptococcus strains of different serotypes, we developed in this study a double-mutated nontoxic derivative that represents a novel tool for the development of protective vaccine formulations against this important human pathogen. Furthermore, the innovative construction of an isogenic strain expressing a functionally inactive toxin and its use in infection and opsonophagocytosis experiments allowed us to investigate the mechanism by which streptolysin O mediates protection against group A Streptococcus. Finally, the ability of this toxin to directly attack and kill host immune cells during infection was studied in an air pouch model, which allowed parallel quantification of cellular recruitment, vitality, and cytokine release at the infection site.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/mBio.00387-12DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3546560PMC
January 2013

RrgB321, a fusion protein of the three variants of the pneumococcal pilus backbone RrgB, is protective in vivo and elicits opsonic antibodies.

Infect Immun 2012 Jan 14;80(1):451-60. Epub 2011 Nov 14.

Research Center, Novartis Vaccines and Diagnostics s.r.l., Siena, Italy.

Streptococcus pneumoniae pilus 1 is present in 30 to 50% of invasive disease-causing strains and is composed of three subunits: the adhesin RrgA, the major backbone subunit RrgB, and the minor ancillary protein RrgC. RrgB exists in three distinct genetic variants and, when used to immunize mice, induces an immune response specific for each variant. To generate an antigen able to protect against the infection caused by all pilus-positive S. pneumoniae strains, we engineered a fusion protein containing the three RrgB variants (RrgB321). RrgB321 elicited antibodies against proteins from organisms in the three clades and protected mice against challenge with piliated pneumococcal strains. RrgB321 antisera mediated complement-dependent opsonophagocytosis of piliated strains at levels comparable to those achieved with the PCV7 glycoconjugate vaccine. These results suggest that a vaccine composed of RrgB321 has the potential to cover 30% or more of all pneumococcal strains and support the inclusion of this fusion protein in a multicomponent vaccine against S. pneumoniae.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/IAI.05780-11DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3255673PMC
January 2012

Rational design of a meningococcal antigen inducing broad protective immunity.

Sci Transl Med 2011 Jul;3(91):91ra62

Novartis Vaccines and Diagnostics S.r.l., Via Fiorentina 1, 53100 Siena, Italy.

The sequence variability of protective antigens is a major challenge to the development of vaccines. For Neisseria meningitidis, the bacterial pathogen that causes meningitis, the amino acid sequence of the protective antigen factor H binding protein (fHBP) has more than 300 variations. These sequence differences can be classified into three distinct groups of antigenic variants that do not induce cross-protective immunity. Our goal was to generate a single antigen that would induce immunity against all known sequence variants of N. meningitidis. To achieve this, we rationally designed, expressed, and purified 54 different mutants of fHBP and tested them in mice for the induction of protective immunity. We identified and determined the crystal structure of a lead chimeric antigen that was able to induce high levels of cross-protective antibodies in mice against all variant strains tested. The new fHBP antigen had a conserved backbone that carried an engineered surface containing specificities for all three variant groups. We demonstrate that the structure-based design of multiple immunodominant antigenic surfaces on a single protein scaffold is possible and represents an effective way to create broadly protective vaccines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.3002234DOI Listing
July 2011

Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic Escherichia coli.

Proc Natl Acad Sci U S A 2010 May 3;107(20):9072-7. Epub 2010 May 3.

Novartis Vaccines and Diagnostics, 53100 Siena, Italy.

Extraintestinal pathogenic Escherichia coli (ExPEC) are a common cause of disease in both mammals and birds. A vaccine to prevent such infections would be desirable given the increasing antibiotic resistance of these bacteria. We have determined the genome sequence of ExPEC IHE3034 (ST95) isolated from a case of neonatal meningitis and compared this to available genome sequences of other ExPEC strains and a few nonpathogenic E. coli. We found 19 genomic islands present in the genome of IHE3034, which are absent in the nonpathogenic E. coli isolates. By using subtractive reverse vaccinology we identified 230 antigens present in ExPEC but absent (or present with low similarity) in nonpathogenic strains. Nine antigens were protective in a mouse challenge model. Some of them were also present in other pathogenic non-ExPEC strains, suggesting that a broadly protective E. coli vaccine may be possible. The gene encoding the most protective antigen was detected in most of the E. coli isolates, highly conserved in sequence and found to be exported by a type II secretion system which seems to be nonfunctional in nonpathogenic strains.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.0915077107DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2889118PMC
May 2010

The membrane expression of Neisseria meningitidis adhesin A (NadA) increases the proimmune effects of MenB OMVs on human macrophages, compared with NadA- OMVs, without further stimulating their proinflammatory activity on circulating monocytes.

J Leukoc Biol 2009 Jul 28;86(1):143-53. Epub 2009 Apr 28.

CRIBI and Department of Biomedical Sciences, University of Padova, Italy.

Hypervirulent MenB causing fatal human infections frequently display the oligomeric-coiled coil adhesin NadA, a 45-kDa intrinsic outer membrane protein implicated in binding to and invasion of respiratory epithelial cells. A recombinant soluble mutant lacking the 10-kDa COOH terminal membrane domain (NadA(Delta351-405)) also activates human monocytes/macrophages/DCs. As NadA is physiologically released during sepsis as part of OMVs, in this study, we tested the hypothesis that NadA(+) OMVs have an enhanced or modified proinflammatory/proimmune action compared with NadA(-) OMVs. To do this we investigated the activity of purified free NadA(Delta351-405) and of OMVs from MenB and Escherichia coli strains, expressing or not full-length NadA. NadA(Delta351-405) stimulated monocytes and macrophages to secrete cytokines (IL-1beta, TNF-alpha, IL-6, IL-12p40, IL-12p70, IL-10) and chemokines (IL-8, MIP-1alpha, MCP-1, RANTES), and full-length NadA improved MenB OMV activity, preferentially on macrophages, and only increased cytokine release. NadA(Delta351-405) induced the lymphocyte costimulant CD80 in monocytes and macrophages, and NadA(+) OMVs induced a wider set of molecules supporting antigen presentation (CD80, CD86, HLA-DR, and ICAM-1) more efficiently than NadA(-) OMVs only in macrophages. Moreover, membrane NadA effects, unlike NadA(Delta351-405) ones, were much less IFN-gamma-sensitive. The activity of NadA-positive E. coli OMVs was similar to that of control OMVs. NadA in MenB OMVs acted at adhesin concentrations approximately 10(6) times lower than those required to stimulate cells with free NadA(Delta351-405).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1189/jlb.0109030DOI Listing
July 2009

The RNA chaperone Hfq is involved in stress response and virulence in Neisseria meningitidis and is a pleiotropic regulator of protein expression.

Infect Immun 2009 May 17;77(5):1842-53. Epub 2009 Feb 17.

Novartis Vaccines, Via Fiorentina 1, 53100 Siena, Italy.

The well-conserved protein Hfq has emerged as the key modulator of riboregulation in bacteria. This protein is thought to function as an RNA chaperone and to facilitate base pairing between small regulatory RNA (sRNA) and mRNA targets, and many sRNAs are dependent on the Hfq protein for their regulatory functions. To address the possible role of Hfq in riboregulated circuits in Neisseria meningitidis, we generated an Hfq mutant of the MC58 strain, and the knockout mutant has pleiotropic phenotypes; it has a general growth phenotype in vitro in culture media, and it is sensitive to a wide range of stresses, including those that it may encounter in the host. Furthermore, the expression profile of a vast number of proteins is clearly altered in the mutant, and we have identified 27 proteins by proteomics. All of the phenotypes tested to date are also restored by complementation of Hfq expression in the mutant strain. Importantly, in ex vivo and in vivo models of infection the Hfq mutant is attenuated. These data indicate that Hfq plays a key role in stress response and virulence, and we propose a major role for Hfq in regulation of gene expression. Moreover, this study suggests that in meningococcus there is a large Hfq-mediated sRNA network which so far is largely unexplored.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/IAI.01216-08DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2681778PMC
May 2009

Identification of a new OmpA-like protein in Neisseria gonorrhoeae involved in the binding to human epithelial cells and in vivo colonization.

Mol Microbiol 2007 Jun;64(5):1391-403

Research Centre, Novartis Vaccines, Via Fiorentina, 1, 53100 Siena, Italy.

Outer membrane protein As (OmpAs) are highly conserved proteins within the Enterobacteriaceae family. OmpA contributes to the maintenance of structural membrane integrity and invasion into mammalian cells. In Escherichia coli K1 OmpA also contributes to serum resistance and is involved in the virulence of the bacterium. Here we describe the identification of an OmpA-like protein in Neisseria gonorrhoeae (Ng-OmpA). We show that the gonococcal OmpA-like protein, similarly to E. coli OmpA, plays a significant role in the adhesion and invasion into human cervical carcinoma and endometrial cells and is required for entry into macrophages and intracellular survival. Furthermore, the isogenic knockout ompA mutant demonstrates reduced recovery in a mouse model of infection when compared with the wild-type strain, suggesting that Ng-OmpA plays an important role in the in vivo colonization. All together, these data suggest that the newly identified surface exposed protein Ng-OmpA represents a novel virulence factor of gonococcus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2958.2007.05745.xDOI Listing
June 2007

A universal vaccine for serogroup B meningococcus.

Proc Natl Acad Sci U S A 2006 Jul 6;103(29):10834-9. Epub 2006 Jul 6.

Novartis Vaccines, Via Fiorentina 1, 53100 Siena, Italy.

Meningitis and sepsis caused by serogroup B meningococcus are two severe diseases that still cause significant mortality. To date there is no universal vaccine that prevents these diseases. In this work, five antigens discovered by reverse vaccinology were expressed in a form suitable for large-scale manufacturing and formulated with adjuvants suitable for human use. The vaccine adjuvanted by aluminum hydroxide induced bactericidal antibodies in mice against 78% of a panel of 85 meningococcal strains representative of the global population diversity. The strain coverage could be increased to 90% and above by the addition of CpG oligonucleotides or by using MF59 as adjuvant. The vaccine has the potential to conquer one of the most devastating diseases of childhood.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.0603940103DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2047628PMC
July 2006

The region comprising amino acids 100 to 255 of Neisseria meningitidis lipoprotein GNA 1870 elicits bactericidal antibodies.

Infect Immun 2005 Feb;73(2):1151-60

IRIS, Chiron Vaccines, via Fiorentina 1, 53100 Siena, Italy.

GNA 1870 is a novel surface-exposed lipoprotein, identified by genome analysis of Neisseria meningitidis strain MC58, which induces bactericidal antibodies. Three sequence variants of the protein were shown to be sufficient to induce bactericidal antibodies against a panel of strains representative of the diversity of serogroup B meningococci. Here, we studied the antigenic and immunogenic properties of GNA 1870, which for convenience was divided into domains A, B, and C. The immune responses of mice immunized with each of the three variants were tested using overlapping peptides scanning the entire protein length and using recombinant fragments. We found that while most of the linear epitopes are located in the A domain, the bactericidal antibodies are directed against conformational epitopes located in the BC domain. This was also confirmed by the isolation of a bactericidal murine monoclonal antibody, which failed to recognize linear peptides on the A, B, and C domains separately but recognized a conformational epitope formed only by the combination of the B and C domains. Arginine in position 204 was identified as important for binding of the monoclonal antibody. The identification of the region containing bactericidal epitopes is an important step in the design of new vaccines against meningococci.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/IAI.73.2.1151-1160.2005DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC546939PMC
February 2005