Publications by authors named "Elena A Sazhenova"

6 Publications

  • Page 1 of 1

LINE-1 retrotransposon methylation in chorionic villi of first trimester miscarriages with aneuploidy.

J Assist Reprod Genet 2021 Jan 10;38(1):139-149. Epub 2020 Nov 10.

Research Institute of Medical Genetics, Tomsk National Research Medical Center, Nab. R. Ushaiki, 10, Tomsk, Russia.

Purpose: High frequency of aneuploidy in meiosis and cleavage stage coincides with waves of epigenetic genome reprogramming that may indicate a possible association between epigenetic mechanisms and aneuploidy occurrence. This study aimed to assess the methylation level of the long interspersed repeat element 1 (LINE-1) retrotransposon in chorionic villi of first trimester miscarriages with a normal karyotype and aneuploidy.

Methods: The methylation level was assessed at 19 LINE-1 promoter CpG sites in chorionic villi of 141 miscarriages with trisomy of chromosomes 2, 6, 8-10, 13-15, 16, 18, 20-22, and monosomy X using massive parallel sequencing.

Results: The LINE-1 methylation level was elevated statistically significant in chorionic villi of miscarriages with both trisomy (45.2 ± 4.3%) and monosomy X (46.9 ± 4.2%) compared with that in induced abortions (40.0 ± 2.4%) (p < 0.00001). The LINE-1 methylation levels were specific for miscarriages with different aneuploidies and significantly increased in miscarriages with trisomies 8, 14, and 18 and monosomy X (p < 0.05). The LINE-1 methylation level increased with gestational age both for group of miscarriages regardless of karyotype (R = 0.21, p = 0.012) and specifically for miscarriages with trisomy 16 (R = 0.48, p = 0.007). LINE-1 methylation decreased with maternal age in miscarriages with a normal karyotype (R = - 0.31, p = 0.029) and with trisomy 21 (R = - 0.64, p = 0.024) and increased with paternal age for miscarriages with trisomy 16 (R = 0.38, p = 0.048) and monosomy X (R = 0.73, p = 0.003).

Conclusion: Our results indicate that the pathogenic effects of aneuploidy in human embryogenesis can be supplemented with significant epigenetic changes in the repetitive sequences.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10815-020-02003-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823001PMC
January 2021

Delineation of Clinical Manifestations of the Inherited Xq24 Microdeletion Segregating with sXCI in Mothers: Two Novel Cases with Distinct Phenotypes Ranging from UBE2A Deficiency Syndrome to Recurrent Pregnancy Loss.

Cytogenet Genome Res 2020 30;160(5):245-254. Epub 2020 May 30.

Chromosomal microdeletion syndromes present with a wide spectrum of clinical phenotypes that depend on the size and gene content of the affected region. In a healthy carrier, epigenetic mechanisms may compensate for the same microdeletion, which may segregate through several generations without any clinical symptoms until the epigenetic modifications no longer function. We report 2 novel cases of Xq24 microdeletions inherited from mothers with extremely skewed X-chromosome inactivation (sXCI). The first case is a boy presenting with X-linked mental retardation, Nascimento type, due to a 168-kb Xq24 microdeletion involving 5 genes (CXorf56, UBE2A, NKRF, SEPT6, and MIR766) inherited from a healthy mother and grandmother with sXCI. In the second family, the presence of a 239-kb Xq24 microdeletion involving 3 additional genes (SLC25A43, SLC25A5-AS1, and SLC25A5) was detected in a woman with sXCI and a history of recurrent pregnancy loss with a maternal family history without reproductive wastages or products of conception. These cases provide evidence that women with an Xq24 microdeletion and sXCI may be at risk for having a child with intellectual disability or for experiencing a pregnancy loss due to the ontogenetic pleiotropy of a chromosomal microdeletion and its incomplete penetrance modified by sXCI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000508050DOI Listing
September 2020

Allele-Specific Biased Expression of the CNTN6 Gene in iPS Cell-Derived Neurons from a Patient with Intellectual Disability and 3p26.3 Microduplication Involving the CNTN6 Gene.

Mol Neurobiol 2018 Aug 11;55(8):6533-6546. Epub 2018 Jan 11.

Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia.

Copy number variations (CNVs) of the human CNTN6 gene caused by megabase-scale microdeletions or microduplications in the 3p26.3 region are often the cause of neurodevelopmental disorders, including intellectual disability and developmental delay. Surprisingly, patients with different copy numbers of this gene display notable overlapping of neuropsychiatric symptoms. The complexity of the study of human neuropathologies is associated with the inaccessibility of brain material. This problem can be overcome through the use of reprogramming technologies that permit the generation of induced pluripotent stem (iPS) cells from fibroblasts and their subsequent in vitro differentiation into neurons. We obtained a set of iPS cell lines derived from a patient carrier of the CNTN6 gene duplication and from two healthy donors. All iPS cell lines displayed the characteristics of pluripotent cells. Some iPS cell lines derived from the patient and from healthy donors were differentiated in vitro by exogenous expression of the Ngn2 transcription factor or by spontaneous neural differentiation of iPS cells through the neural rosette stage. The obtained neurons showed the characteristics of mature neurons as judged by the presence of neuronal markers and by their electrophysiological characteristics. Analysis of allele-specific expression of the CNTN6 gene in these neuronal cells by droplet digital PCR demonstrated that the level of expression of the duplicated allele was significantly reduced compared to that of the wild-type allele. Importantly, according to the sequencing data, both copies of the CNTN6 gene, which were approximately 1 Mb in size, showed no any additional structural rearrangements.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-017-0851-5DOI Listing
August 2018

Comparative Cytogenetic Analysis of Spontaneous Abortions in Recurrent and Sporadic Pregnancy Losses.

Biomed Hub 2016 Jan-Apr;1(1):1-11. Epub 2016 Apr 27.

Laboratory of Cytogenetics, Institute of Medical Genetics, Siberian State Medical University, Tomsk, Russia.

Background: The majority of miscarriages are sporadic; however, 1-5% of couples experience recurrent pregnancy loss (RPL). Approximately 50-60% of miscarriages result from chromosomal abnormalities. Currently, there are conflicting reports regarding the rates of chromosomal abnormalities between recurrent and sporadic pregnancy losses.

Methods: A retrospective comparative cytogenetic analysis of 442 RPL and 466 sporadic abortions (SA) was performed. Maternal age and medical background were evaluated, and chromosomal abnormality rates were compared between groups.

Results: The frequency of embryos with abnormal karyotypes was significantly higher in SA compared to RPL (56.7 and 46.6%, respectively), and abortions from women under 30 years of age were the main contributor to this difference. An age-dependent increase in the abnormal karyotype rate was observed in two groups of women - those with SA [53.0 and 70.1% for younger and older (≥35-year-old) mothers, respectively] and those with idiopathic RPL without any concomitant reproductive pathology (46.5 and 78.4% for younger and older mothers) - but not in the group of women with RPL associated with concomitant reproductive pathology. The incidence of recurrent abnormal karyotypes in subsequent miscarriages was significantly higher than random probability (odds ratio = 22.75).

Conclusion: Our findings highlight the variability in the risk of aneuploidy in recurrent abortion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000446099DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6945958PMC
April 2016

Array CGH analysis of a cohort of Russian patients with intellectual disability.

Gene 2014 Feb 27;536(1):145-50. Epub 2013 Nov 27.

Institute of Medical Genetics, Tomsk, Russia.

The use of array comparative genomic hybridization (array CGH) as a diagnostic tool in molecular genetics has facilitated the identification of many new microdeletion/microduplication syndromes (MMSs). Furthermore, this method has allowed for the identification of copy number variations (CNVs) whose pathogenic role has yet to be uncovered. Here, we report on our application of array CGH for the identification of pathogenic CNVs in 79 Russian children with intellectual disability (ID). Twenty-six pathogenic or likely pathogenic changes in copy number were detected in 22 patients (28%): 8 CNVs corresponded to known MMSs, and 17 were not associated with previously described syndromes. In this report, we describe our findings and comment on genes potentially associated with ID that are located within the CNV regions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2013.11.029DOI Listing
February 2014

A mathematical model for evaluation of maternal cell contamination in cultured cells from spontaneous abortions: significance for cytogenetic analysis of prenatal selection factors.

Fertil Steril 2005 Apr;83(4):964-72

Cytogenetics Laboratory, Institute of Medical Genetics, Tomsk Scientific Center, Russian Academy of Medical Sciences, Ushaika Street 10, Tomsk 634050, Russia.

Objective: To develop a mathematical model for more precise estimation of the incidence of chromosomal abnormalities and the sex ratio among spontaneous abortions masked by maternal cell contamination.

Design: Retrospective analysis.

Setting: Academic medical center.

Patient(s): One hundred twelve samples of spontaneous abortion with a "46,XX" karyotype and 97 parents with aborted embryos.

Intervention(s): The presence of Y chromosome DNA in native tissues of "46,XX" spontaneous abortions was detected by amelogenin locus analysis. Detection of aneuploidies in noncultured tissues of "46,XX" abortions was performed by microsatellite DNA analysis and confirmed by fluorescence in situ hybridization.

Main Outcome Measure(s): Accuracy of cytogenetic evaluation of spontaneous abortions.

Result(s): Y chromosome DNA was revealed in 16% of the embryos with a "46,XX" karyotype. According to the mathematical model proposed, the frequency of chromosomal abnormalities in a sample of 478 abortions increased from 54.6% to 60.3%, and the sex ratio in embryos with normal karyotype changed from 0.66 to 1.02. The experimental validation of the model has shown that the observed and expected incidences of chromosomal abnormalities in "46,XX" abortions were in good agreement.

Conclusion(s): Maternal cell contamination clearly affects the incidence of registered chromosomal abnormalities and the sex ratio in spontaneous abortions. Correction for maternal cell contamination should be taken into account before invoking biological explanations of sex ratio bias and might be useful to include in diagnostic reporting.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fertnstert.2004.12.009DOI Listing
April 2005